593
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Different iron sources affected haemoglobin and myoglobin synthesis, and gene expression related to iron metabolism in skeletal muscle in piglets

, , , , , , , & ORCID Icon show all
Article: 2247182 | Received 30 Jan 2023, Accepted 04 Jun 2023, Published online: 05 Sep 2023

References

  • Behroozlak, M. A., Daneshyar, M., Farhoomand, P., & Nikoo, A. (2021). Broiler responses to ferrous sulfate at different time periods: A comprehensive research on qualitative parameters of breast meat. Journal of Food Science and Technology, 58(4), 1319–1330. https://doi.org/10.1007/s13197-020-04642-9
  • Bhusal, A., Lee, W. H., & Suk, K. (2021). Lipocalin-2 in diabetic complications of the nervous system: Physiology, pathology, and beyond. Frontiers in Physiology, 12, 638112. https://doi.org/10.3389/fphys.2021.638112
  • Carlson, B. M. (1973). The regeneration of skeletal muscle? A review. American Journal of Anatomy, 137(2), 119–149. https://doi.org/10.1002/aja.1001370202
  • Chen, H., Huang, G., Su, T., Gao, H., Attieh, Z. K., McKie, A. T., Anderson, G. J., & Vulpe, C. D. (2006). Decreased hephaestin activity in the intestine of copper-deficient mice causes systemic iron deficiency. The Journal of Nutrition, 136(5), 1236–1241. https://doi.org/10.1093/jn/136.5.1236
  • Crossland, H., Constantin-Teodosiu, D., Gardiner, S. M., Constantin, D., & Greenhaff, P. L. (2008). A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle. The Journal of Physiology, 586(22), 5589–5600. https://doi.org/10.1113/jphysiol.2008.160150
  • Donovan, A., Lima, C. A., Pinkus, J. L., Pinkus, G. S., Zon, L. I., Robine, S., & Andrews, N. C. (2005). The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabolism, 1(3), 191–200. https://doi.org/10.1016/j.cmet.2005.01.003
  • Edison, E. S., Bajel, A., & Chandy, M. (2008). Iron homeostasis: New players, newer insights. European Journal of Haematology, 81(6), 411–424. https://doi.org/10.1111/j.1600-0609.2008.01143.x
  • Enns, C. A. (2006). Possible roles of the hereditary hemochromatosis protein, HFE, in regulating cellular iron homeostasis. Biological Research, 39(1), 105–111. https://doi.org/10.4067/s0716-97602006000100013
  • Fang, C. L., Zhuo, Z., Fang, S. L., Yue, M., & Feng, J. (2013). Iron sources on iron status and gene expression of iron related transporters in iron-deficient piglets. Animal Feed Science and Technology, 182(1-4), 121–125. https://doi.org/10.1016/j.anifeedsci.2013.03.005
  • Gammella, E., Buratti, P., Cairo, G., & Recalcati, S. (2017). The transferrin receptor: The cellular iron gate. Metallomics, 9(10), 1367–1375. https://doi.org/10.1039/C7MT00143F
  • Gao, G., Li, J., Zhang, Y., & Chang, Y. Z. (2019). Cellular iron metabolism and regulation. Advances in Experimental Medicine and Biology, 1173, 21–32. https://doi.org/10.1007/978-981-13-9589-5_2
  • Hagler, L., Askew, E. W., Neville, J. R., Mellick, P. W., Coppes, R. I. J., & Lowder, J. F. J. (1981). Influence of dietary iron deficiency on hemoglobin, myoglobin, their respective reductases, and skeletal muscle mitochondrial respiration. American Journal of Clinical Nutrition, 34(10), 2169–2177. https://doi.org/10.1093/ajcn/34.10.2169
  • Hargreaves, M., & Cameron-Smith, D. (2002). Exercise, diet, and skeletal muscle gene expression. Medicine and Science In Sports and Exercise, 34(9), 1505–1508. https://doi.org/10.1097/00005768-200209000-00017
  • Higashida, K., Inoue, S., & Nakai, N. (2020). Iron deficiency attenuates protein synthesis stimulated by branched-chain amino acids and insulin in myotubes. Biochemical and Biophysical Research Communications, 531(2), 112–117. https://doi.org/10.1016/j.bbrc.2020.07.041
  • Higashida, K., Inoue, S., Takeuchi, N., Ato, S., Ogasawara, R., & Nakai, N. (2021). Basal and resistance exercise-induced increase in protein synthesis is impaired in skeletal muscle of iron-deficient rats. Nutrition, 91-92, 111389. https://doi.org/10.1016/j.nut.2021.111389
  • Kang, P., Wang, Y., Li, X. G., Wan, Z. C., Wang, X. Y., Zhu, H. L., Wang, C. W., Zhao, S. J., Chen, H. F., & Liu, Y. L. (2020). Effect of flaxseed oil on muscle protein loss and carbohydrate oxidation impairment in a pig model after lipopolysaccharide challenge. British Journal of Nutrition, 123(8), 859–869. https://doi.org/10.1017/S0007114519002393
  • Kobak, K., Kasztura, M., Dziegala, M., Bania, J., Kapuśniak, V., Banasiak, W., Ponikowski, P., & Jankowska, E. A. (2018). Iron limitation promotes the atrophy of skeletal myocytes, whereas iron supplementation prevents this process in the hypoxic conditions. International Journal of Molecular Medicine, 41(5), 2678–2686. https://doi.org/10.3892/ijmm.2018.3481
  • Labarca, C., & Paigen, K. (1980). A simple, rapid, and sensitive DNA assay procedure. Analytical Biochemistry, 102(2), 344–352. https://doi.org/10.1016/0003-2697(80)90165-7
  • Li, Y. S., Zhu, N. H., Niu, P. P., Shi, F. X., Hughes, C. L., Tian, G. X., & Huang, R. H. (2013). Effects of dietary chromium methionine on growth performance, carcass composition, meat colour and expression of the colour-related gene myoglobin of growing-finishing pigs. Asian-Australasian Journal of Animal Sciences, 26(7), 1021–1029. https://doi.org/10.5713/ajas.2013.13012
  • Li, Z. H., Zlabek, V., Velisek, J., Grabic, R., Machova, J., & Randak, T. (2010). Physiological condition status and muscle-based biomarkers in rainbow trout (Oncorhynchus mykiss), after long-term exposure to carbamazepine. Journal of Applied Toxicology, 30(3), 197–203. https://doi.org/10.1002/jat.1482
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Inorganic Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Ma, W. Q., Sun, H., Zhou, Y., Wu, J., & Fen, J. (2012). Effects of iron glycine chelate on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. Biological Trace Element Research, 149(2), 204–211. https://doi.org/10.1007/s12011-012-9418-5
  • Mates, J. M., Perez-Gomez, C., & Nunez de Castro, I. (1999). Antioxidant enzymes and human diseases. Clinical Biochemistry, 32(8), 595–603. https://doi.org/10.1016/S0009-9120(99)00075-2
  • Name, J. J., Vasconcelos, A. R., & Rocha Maluf, M. C. (2018). Iron bisglycinate chelate and polymaltose iron for the treatment of iron deficiency anemia: A pilot randomized trial. Current Pediatric Reviews, 14(4), 261–268. https://doi.org/10.2174/1573396314666181002170040
  • NRC. (2012). Nutrient requirements of swine. 10th ed. National Academic Press.
  • Petersson, B., Hultman, E., Andersson, K., & Wernerman, J. (1995). Human skeletal muscle protein: Effect of malnutrition, elective surgery and total parenteral nutrition. Clinical Science (Lond), 88(4), 479–484. https://doi.org/10.1042/cs0880479
  • Philip, K. E. J., Sadaka, A. S., Polkey, M. I., Hopkinson, N. S., Steptoe, A., & Fancourt, D. (2020). The prevalence and associated mortality of non-anaemic iron deficiency in older adults: A 14 years observational cohort study. British Journal of Haematology, 189(3), 566–572. https://doi.org/10.1111/bjh.16409
  • Pogorzelska-Nowicka, E., Godziszewska, J., Horbańczuk, J. O., Atanasov, A. G., & Wierzbicka, A. (2018). The effect of PUFA-rich plant oils and bioactive compounds supplementation in pig diet on color parameters and myoglobin status in long-frozen pork meat. Molecules, 23(5), 1005. https://doi.org/10.3390/molecules23051005
  • Polonifi, A., Politou, M., Kalotychou, V., Xiromeritis, K., Tsironi, M., Berdoukas, V., Vaiopoulos, G., & Aessopos, A. (2010). Iron metabolism gene expression in human skeletal muscle. Blood Cells Molecules and Diseases, 45(3), 233–237. https://doi.org/10.1016/j.bcmd.2010.07.002
  • Ponnampalam, E. N., Vahedi, V., Giri, K., Lewandowski, P., Jacobs, J. L., & Dunshea, F. R. (2019). Muscle antioxidant enzymes activity and gene expression are altered by diet-induced increase in muscle essential fatty acid (α-linolenic acid) concentration in sheep used as a model. Nutrients, 11(4), 723. https://doi.org/10.3390/nu11040723
  • Santiago-Sánchez, G. S., Pita-Grisanti, V., Quiñones-Díaz, B., Gumpper, K., Cruz-Monserrate, Z., & Vivas-Mejía, P. E. (2020). Biological functions and therapeutic potential of lipocalin 2 in cancer. International Journal of Molecular Sciences, 21(12), 4365. https://doi.org/10.3390/ijms21124365
  • Sarma, P. R. (1990). Red cell indices, Chapter 152. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), Clinical methods: The history, physical, and laboratory examinations (3rd ed., pp. 92–94). Butterworths.
  • Smith, G. I., Atherton, P., Reeds, D. N., Mohammed, B. S., Rankin, D., Rennie, M. J., & Mittendorfer, B. (2011). Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clinical Science (Lond), 121(6), 267–278. https://doi.org/10.1042/CS20100597
  • Storch, D., Heilmayer, O., Hardewig, I., & Pörtner, H. O. (2003). In vitro protein synthesis capacities in a cold stenothermal and a temperate eurythermal pectinid. Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology, 173(7), 611–620. https://doi.org/10.1007/s00360-003-0371-7
  • Stugiewicz, M., Tkaczyszyn, M., Kasztura, M., Banasiak, W., Ponikowski, P., & Jankowska, E. A. (2016). The influence of iron deficiency on the functioning of skeletal muscles: Experimental evidence and clinical implications. European Journal of Heart Failure, 18(7), 762–773. https://doi.org/10.1002/ejhf.467
  • Suman, S. P., & Joseph, P. (2013). Myoglobin chemistry and meat color. Annual Review of Food Science and Technology, 4(1), 79–99. https://doi.org/10.1146/annurev-food-030212-182623
  • Wu, W., Yang, Y., Sun, N., Bao, Z., & Lin, S. (2020). Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability. Food Research International, 131, 108976. https://doi.org/10.1016/j.foodres.2020.108976
  • Wyart, E., Hsu, M. Y., Sartori, R., Mina, E., Rausch, V., Pierobon, E. S., Mezzanotte, M., Pezzini, C., Bindels, L. B., Lauria, A., Penna, F., Hirsch, E., Martini, M., Mazzone, M., Roetto, A., Geninatti Crich, S., Prenen, H., Sandri, M., Menga, A., & Porporato, P. E. (2022). Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia. EMBO Reports, 23(4), e53746. https://doi.org/10.15252/embr.202153746
  • Xiao, X., Yeoh, B. S., & Vijay-Kumar, M. (2017). Lipocalin 2: An emerging player in iron homeostasis and inflammation. Annual Review of Nutrition, 37(1), 103–130. https://doi.org/10.1146/annurev-nutr-071816-064559
  • Yanatori, I., & Kishi, F. (2019). DMT1 and iron transport. Free Radical Biology and Medicine, 133, 55–63. https://doi.org/10.1016/j.freeradbiomed.2018.07.020
  • Yu, Q. P., Feng, D. Y., Xiao, J., Wu, F., He, X. J., Xia, M. H., Dong, T., Liu, Y. H., Tan, H. Z., Zou, S. G., Zheng, T., Ou, X. H., & Zuo, J. J. (2017). Studies on meat color, myoglobin content, enzyme activities, and genes associated with oxidative potential of pigs slaughtered at different growth stages. Asian-Australasian Journal of Animal Sciences, 30(12), 1739–1750. https://doi.org/10.5713/ajas.17.0005
  • Zhang, M., Yan, W., Wang, D., & Xu, W. (2021). Effect of myoglobin, hemin, and ferric iron on quality of chicken breast meat. Animal Bioscience, 34(8), 1382–1391. https://doi.org/10.5713/ajas.20.0529
  • Zhang, S., Cao, Y., & Yang, Q. (2020). Transferrin receptor 1 levels at the cell surface influence the susceptibility of newborn piglets to PEDV infection. PLoS Pathogens, 16(7), e1008682. https://doi.org/10.1371/journal.ppat.1008682
  • Zhao, L., Yang, N., Song, Y., Si, H., Qin, Q., & Guo, Z. (2021b). Effect of iron overload on endothelial cell calcification and its mechanism. Annals of Translational Medicine, 9(22), 1658. https://doi.org/10.21037/atm-21-5666
  • Zhao, X., Zhou, J., Du, G., & Chen, J. (2021a). Recent advances in the microbial synthesis of hemoglobin. Trends in Biotechnology, 39(3), 286–297. https://doi.org/10.1016/j.tibtech.2020.08.004
  • Zhuo, Z., Fang, S., Hu, Q., Huang, D., & Feng, J. (2016). Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage. Scientific Reports, 6(1), 37923. https://doi.org/10.1038/srep37923
  • Zhuo, Z., Fang, S., Yue, M., Zhang, Y., & Feng, J. (2014). Kinetics absorption characteristics of ferrous glycinate in SD rats and its impact on the relevant transport protein. Biological Trace Element Research, 158(2), 197–202. https://doi.org/10.1007/s12011-014-9906-x
  • Zhuo, Z., Yu, X., Li, S., Fang, S., & Feng, J. (2019). Heme and non-heme iron on growth performances, blood parameters, tissue mineral concentration, and intestinal morphology of weanling pigs. Biological Trace Element Research, 187(2), 411–417. https://doi.org/10.1007/s12011-018-1385-z