1,015
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A simple and rapid DNA extraction method from meat by microneedle patch for detection of adulterated components

, , , , , & show all
Article: 2248412 | Received 21 Feb 2023, Accepted 09 Aug 2023, Published online: 06 Sep 2023

References

  • Al, S. D., Chang, J., Bennett, N. R., Topouzi, H., Higgins, C. A., Irvine, D. J., & Ladame, S. (2019). Hydrogel-coated microneedle arrays for minimally invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid. ACS Nano, 13(8), 9620–9628. https://doi.org/10.1021/acsnano.9b04783
  • Ballin, N. Z., Vogensen, F. K., & Karlsson, A. H. (2009). Species determination – can we detect and quantify meat adulteration? Meat Science, 83(2), 165–174. https://doi.org/10.1016/j.meatsci.2009.06.003
  • Beibei Wang, X. H. (2012). Supply and demand situation and prospect of mutton in China. Outlook for Agriculture, 8(10), 19–22.
  • Cao. (2017). Study on visual identification methods for detection of 5 animal-derived components by PCR and RPA. Nanjing Agricultural University.
  • Cao, Y., Zheng, K., Jiang, J., Wu, J., Shi, F., Song, X., & Jiang, Y. (2018). A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I. Food Chemistry, 266, 73–78. https://doi.org/10.1016/j.foodchem.2018.05.115
  • Chandu, D., Paul, S., Parker, M., Dudin, Y., King-Sitzes, J., Perez, T., Mittanck, D. W., Shah, M., Glenn, K. C., & Piepenburg, O. (2016). Development of a rapid point-of-use DNA test for the screening of genuity® roundup ready 2 yield® soybean in seed samples. Biomed Research International, 2016. https://doi.org/10.1155/2016/3145921
  • Chang, H., Zheng, M., Yu, X., Than, A., Seeni, R. Z., Kang, R., Tian, J., Khanh, D. P., Liu, L., Chen, P., & Xu, C. (2017). A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Advanced Materials, 29(37), 1702243. https://doi.org/10.1002/adma.201702243
  • David, S., Blaise, B., Bruce, C. V. C., Jeffrey, S. C., Christophe, C., Diederik, D., Eesa, M., Fischer, U., Hausegger, K., Hirsch, J. A., Hussain, M. S., Jansen, O., Jayaraman, M. V., Khalessi, A. A., Kluck, B. W., Lavine, S., Meyers, P. M., Ramee, S., Rüfenacht, D. A., … Dierk, V. (2018). Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. International Journal of Stroke, 13(6), 612–632. https://doi.org/10.1177/1747493018778713
  • Dayu Liu, L. X. W. W. (2019). Research progress and analysis and comparison of mutton forgery identification technology. Journal of Food Safety and quality Inspection, 10(1), 181–186.
  • Donnelly, R. F., Mccrudden, M. T., Zaid, A. A., Larraneta, E., Mcalister, E., Courtenay, A. J., Kearney, M.-C., Singh, T. R. R., McCarthy, H. O., Kett, V. L., Caffarel-Salvador, E., Al-Zahrani, S., & Woolfson, A. D. (2014). Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One, 9(10), e111547. https://doi.org/10.1371/journal.pone.0111547
  • Eltayib, E., Brady, A. J., Caffarel-Salvador, E., Gonzalez-Vazquez, P., Zaid, A. A., Mccarthy, H. O., McElnay, J. C., & Donnelly, R. F. (2016). Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring. European Journal of Pharmaceutics and Biopharmaceutics, 102, 123–131. https://doi.org/10.1016/j.ejpb.2016.03.009
  • Guha, P., Das, A., Dutta, S., & Chaudhuri, T. K. (2018). A rapid and efficient DNA extraction protocol from fresh and frozen human blood samples. Journal of Clinical Laboratory Analysis, 32(1), 1. https://doi.org/10.1002/jcla.22181
  • Higuchi, R., Fockler, C., Dollinger, G., & Watson, R. (1993). Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions. Bio/technology (Nature Publishing Company), 11(3), 9. https://doi.org/10.1038/nbt0393-S9
  • Jingxin Zhang, Y. G. Y. F. (2015). Identification of duck-derived components in livestock and poultry meat by PCR. Anhui Agricultural Sciences, 43(34), 202–203.
  • Kang, T., Lu, J., Yu, T., Long, Y., & Liu, G. (2022). Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example. Biosensors & Bioelectronics, 206, 114109. https://doi.org/10.1016/j.bios.2022.114109
  • Kesmen, Z., Gulluce, A., Sahin, F., & Yetim, H. (2009). Identification of meat species by TaqMan-based real-time PCR assay. Meat Science, 82(4), 444–449. https://doi.org/10.1016/j.meatsci.2009.02.019
  • Kight, E., Alfaro, R., Gadila, S., Chang, S., Evans, D., Embers, M., & Haselton, F. (2022). Direct capture and early detection of lyme disease spirochete in skin with a microneedle patch. Biosensors (Basel), 12(10), 819. https://doi.org/10.3390/bios12100819
  • Kim, J., Johnson, M., Hill, P., & Gale, B. K. (2009). Microfluidic sample preparation: Cell lysis and nucleic acid purification. Integrative Biology: Quantitative Biosciences from Nano to Macro, 1(10).
  • Kim, Y. S., Kim, J., Na, W., Sung, G. H., Baek, S. K., Kim, Y. K., Kim, G. R., Hu, H.-J., & Park, J. H. (2022). Development of a microneedle swab for acquisition of genomic DNA from buccal cells. Frontiers in Bioengineering and Biotechnology, 10, 829648. https://doi.org/10.3389/fbioe.2022.829648
  • Kumar, A., Kumar, R. R., Sharma, B. D., Gokulakrishnan, P., Mendiratta, S. K., & Sharma, D. (2015). Identification of species origin of meat and meat products on the DNA basis: A review. Critical Reviews in Food Science and Nutrition, 55(10), 1340–1351. https://doi.org/10.1080/10408398.2012.693978
  • Li, H., Feng, J., Wang, Y., Liu, G., Chen, X., & Fu, L. (2021). Instant and multiple DNA extraction method by microneedle patch for rapid and on-site detection of food allergen-encoding genes. Journal of Agricultural and Food Chemistry, 69(24), 6879–6887. https://doi.org/10.1021/acs.jafc.1c01077
  • Li, J., Lu, H., Wang, Y., Yang, S., Zhang, Y., Wei, W., Qiao, Y., Dai, W., Ge, R., & Dong, H. (2022). Interstitial fluid biomarkers’ minimally invasive monitoring using microneedle sensor arrays. Analytical Chemistry, 94(2), 968–974. https://doi.org/10.1021/acs.analchem.1c03827
  • Li, J., Ma, B., Fang, J., Zhi, A., Chen, E., Xu, Y., Yu, X., Sun, C., & Zhang, M. (2019). Recombinase polymerase amplification (RPA) combined with lateral flow immunoassay for rapid detection of salmonella in food. Foods (basel, Switzerland), 9(1), 27. https://doi.org/10.3390/foods9010027
  • Li, X., & Guan, Y. (2019). Specific identification of the adulterated components in beef or mutton meats using multiplex PCR. Journal of Aoac International, 102(4), 1181–1185. https://doi.org/10.5740/jaoacint.18-0338
  • Mukerjee, E. V., Collins, S. D., Isseroff, R. R., & Smith, R. L. (2003). Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors & Actuators: A. Physical, 114(2), 267–275.
  • Nehal, N., Choudhary, B., Nagpure, A., & Gupta, R. K. (2021). DNA barcoding: A modern age tool for detection of adulteration in food. Critical Reviews in Biotechnology, 41(5), 767–791. https://doi.org/10.1080/07388551.2021.1874279
  • Nicoloso, L., Crepaldi, P., Mazza, R., Ajmone-Marsan, P., & Negrini, R. (2013). Recent advance in DNA-based traceability and authentication of livestock meat PDO and PGI products. Recent Patents on Food, Nutrition & Agriculture, 5(1), 9–18. https://doi.org/10.2174/2212798411305010004
  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), E63. https://doi.org/10.1093/nar/28.12.e63
  • Paul, A. M., Ryan, A. D. W., Gavin, F. D., Agnieszka, Z., & John, H. P. (2004). Influence of plasticizer type and storage conditions on properties of poly(methyl vinyl ether-co-maleic anhydride) bioadhesive films. Journal of Applied Polymer Science, 91(3), 1576–1589.
  • Paul, R., Ostermann, E., Chen, Y., Saville, A. C., Yang, Y., Gu, Z., Whitfield, A. E., Ristaino, J. B., & Wei, Q. (2021). Integrated microneedle-smartphone nucleic acid amplification platform for in-field diagnosis of plant diseases. Biosensors & Bioelectronics, 187, 113312. https://doi.org/10.1016/j.bios.2021.113312
  • Paul, R., Ostermann, E., Gu, Z., Ristaino, J. B., & Wei, Q. (2020). DNA extraction from plant leaves using a microneedle patch. Current Protocols in Plant Biology, 5(1), e20104. https://doi.org/10.1002/cppb.20104
  • Paul, R., Saville, A. C., Hansel, J. C., Ye, Y., Ball, C., Williams, A., Chang, X., Chen, G., Gu, Z., Ristaino, J. B., & Wei, Q. (2019). Extraction of plant DNA by microneedle patch for rapid detection of plant diseases. ACS Nano, 13(6), 6540–6549. https://doi.org/10.1021/acsnano.9b00193
  • Petya, S., Marieta, T., Tzveta, G., Velitchka, G., & Angel, A. (2013). A modified CTAB method for DNA extraction from soybean and meat products. Biotechnology & Biotechnological Equipment, 27(3), 3803 –3810.
  • Piepenburg, O., Williams, C. H., Stemple, D. L., & Armes, N. A. (2006). DNA detection using recombination proteins. Plos Biology, 4(7), 7. https://doi.org/10.1371/journal.pbio.0040204
  • Qiao, Y., Du, J., Ge, R., Lu, H., Wu, C., Li, J., Yang, S., Zada, S., Dong, H., & Zhang, X. (2022). A sample and detection microneedle patch for psoriasis MicroRNA biomarker analysis in interstitial fluid. Analytical Chemistry, 94(14), 5538–5545. https://doi.org/10.1021/acs.analchem.1c04401
  • Raj, S. T., Woolfson, A. D., & Donnelly, R. F. (2010). Investigation of solute permeation across hydrogels composed of poly(methyl vinyl ether-co-maleic acid) and poly(ethylene glycol). Journal of Pharmacy and Pharmacology, 62(7), 829–837. https://doi.org/10.1211/jpp.62.06.0003
  • Rossen, L., Nørskov, P., Holmstrøm, K., & Rasmussen, O. F. (1992). Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. International Journal of Food Microbiology, 17(1), 1. https://doi.org/10.1016/0168-1605(92)90017-W
  • Sabri, A., Anjani, Q. K., Utomo, E., Ripolin, A., & Donnelly, R. F. (2022). Development and characterization of a dry reservoir-hydrogel-forming microneedles composite for minimally invasive delivery of cefazolin. International Journal of Pharmaceutics, 617, 121593. https://doi.org/10.1016/j.ijpharm.2022.121593
  • Varma, A., Padh, H., & Shrivastava, N. (2007). Plant genomic DNA isolation: An art or a science. Biotechnology Journal, 2(3), 386–392. https://doi.org/10.1002/biot.200600195
  • Wang, F., Ge, D., Wang, L., Li, N., Chen, H., Zhang, Z., Zhu, W., Wang, S., & Liang, W. (2021). Rapid and sensitive recombinase polymerase amplification combined with lateral flow strips for detecting Candida albicans. Analytical Biochemistry, 633, 114428. https://doi.org/10.1016/j.ab.2021.114428
  • Wang, P. M., Cornwell, M., & Prausnitz, M. R. (2005). Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technology & Therapeutics, 7(1), 131–141. https://doi.org/10.1089/dia.2005.7.131
  • Wang, Q., Shen, X., Qiu, T., Wu, W., Li, L., Wang, Z., & Shou, H. (2021). Evaluation and application of an efficient plant DNA extraction protocol for laboratory and field testing. Journal of Zhejiang University-SCIENCE B, 22(2), 99–111. https://doi.org/10.1631/jzus.B2000465
  • Wang, R., Zhang, F., Wang, L., Qian, W., Qian, C., Wu, J., & Ying, Y. (2017). Instant, visual, and instrument-free method for on-site screening of GTS 40-3-2 soybean based on body-heat triggered recombinase polymerase amplification. Analytical Chemistry, 89(8), 4413 –4418.
  • Wang, T. Y., Wang, L., Zhang, J. H., & Dong, W. H. (2011). A simplified universal genomic DNA extraction protocol suitable for PCR. Genetics and Molecular Research, 10(1), 519–525. https://doi.org/10.4238/vol10-1gmr1055
  • Xiao, B., Zhao, R., Wang, N., Zhang, J., Sun, X., Huang, F., & Chen, A. (2023). Integrating microneedle DNA extraction to hand-held microfluidic colorimetric LAMP chip system for meat adulteration detection. Food Chemistry, 411, 135508. https://doi.org/10.1016/j.foodchem.2023.135508
  • Xiaofang Wu, H. Y. X. Z. (2021). Rapid detection of mutton-derived components by visual nucleic acid isothermal amplification. Chinese Journal of Health Inspection, 31(7), 817–819.
  • Xiujuan Wang, R. X. C. Z. (2015). Optimization of extraction conditions of blood genomic DNA extraction kit. Disease Surveillance and Control, 9(12), 855–857.
  • Xu, J., Zhao, W., Zhu, M., Wen, Y., Xie, T., He, X., Zhang, Y., Cao, S., Niu, L., Zhang, H., & Zhong, T. (2016). Molecular identification of adulteration in mutton based on mitochondrial 16S rRNA gene. Mitochondrial DNA Part A, DNA Mapping Sequencing, and Analysis, 27(1), 628–632. https://doi.org/10.3109/19401736.2014.908377
  • Yalcinkaya, B., Yumbul, E., Mozioglu, E., & Akgoz, M. (2017). Comparison of DNA extraction methods for meat analysis. Food Chemistry, 221, 1253–1257. https://doi.org/10.1016/j.foodchem.2016.11.032
  • Zhu, J., Zhou, X., Kim, H. J., Qu, M., Jiang, X., Lee, K., Ren, L., Wu, Q., Wang, C., Zhu, X., Tebon, P., Zhang, S., Lee, J., Ashammakhi, N., Ahadian, S., Dokmeci, M. R., Gu, Z., Sun, W., & Khademhosseini, A. (2020). Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid. Small, 16(16), e1905910. https://doi.org/10.1002/smll.201905910