557
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of Porphyra-derived polysaccharides and oligosaccharides on attenuating food allergy and modulating enteric microflora in mice

, , , , , & show all
Article: 2248419 | Received 06 Jul 2023, Accepted 09 Aug 2023, Published online: 06 Sep 2023

References

  • Anvari, S., Miller, J., Yeh, C.-Y., & Davis, C. M. (2019). IgE-mediated food allergy. Clinical Reviews in Allergy & Immunology, 57(2), 244–260. https://doi.org/10.1007/s12016-018-8710-3
  • Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., Fukuda, S., Saito, T., Narushima, S., Hase, K., Kim, S., Fritz, J. V., Wilmes, P., Ueha, S., Matsushima, K., Ohno, H., Olle, B., Sakaguchi, S., Taniguchi, T., … Hase, K. (2013). Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 500(7461), 232–236. https://doi.org/10.1038/nature12331
  • Berni Canani, R., Sangwan, N., Stefka, A. T., Nocerino, R., Paparo, L., Aitoro, R., Calignano, A., Khan, A. A., Gilbert, J. A., & Nagler, C. R. (2016). Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. The ISME Journal, 10(3), 742–750. https://doi.org/10.1038/ismej.2015.151
  • Bhatia, S., Rathee, P., Sharma, K., Chaugule, B., Kar, N., & Bera, T. (2013). Immuno-modulation effect of sulphated polysaccharide (porphyran) from Porphyra vietnamensis. International Journal of Biological Macromolecules, 57, 50–56. https://doi.org/10.1016/j.ijbiomac.2013.03.012
  • Burrello, C., Garavaglia, F., Cribiù, F. M., Ercoli, G., Lopez, G., Troisi, J., Colucci, A., Guglietta, S., Carloni, S., Guglielmetti, S., Taverniti, V., Nizzoli, G., Bosari, S., Caprioli, F., Rescigno, M., & Facciotti, F. (2018). Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nature Communications, 9(1), 5184. https://doi.org/10.1038/s41467-018-07359-8
  • Chaplin, D. D. (2010). Overview of the immune response. Journal of Allergy and Clinical Immunology, 125(2), S3–S23. https://doi.org/10.1016/j.jaci.2009.12.980
  • Cheng, J., Hu, J., Geng, F., & Nie, S. (2022). Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. Food Science and Human Wellness, 11(5), 1101–1110. https://doi.org/10.1016/j.fshw.2022.04.002
  • Cian, R. E., Drago, S. R., Sanchez de Medina, F., & Martínez-Augustin, O. (2015). Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Marine Drugs, 13(8), 5358–5383. https://doi.org/10.3390/md13085358
  • Cian, R. E., Martínez-Augustin, O., & Drago, S. R. (2012). Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyra columbina. Food Research International, 49(1), 364–372. https://doi.org/10.1016/j.foodres.2012.07.003
  • Cockburn, D. W., & Koropatkin, N. M. (2016). Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. Journal of Molecular Biology, 428(16), 3230–3252. https://doi.org/10.1016/j.jmb.2016.06.021
  • Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods (Basel, Switzerland), 8(3), 92. https://doi.org/10.3390/foods8030092
  • Dethlefsen, L., McFall-Ngai, M., & Relman, D. A. (2007). An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature, 449(7164), 811–818. https://doi.org/10.1038/nature06245
  • Di, T., Chen, G., Sun, Y., Ou, S., Zeng, X., & Ye, H. (2018). In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra. Journal of Functional Foods, 40, 18–27. https://doi.org/10.1016/j.jff.2017.10.040
  • Fazlollahi, M., Chun, Y., Grishin, A., Wood, R. A., Burks, A. W., Dawson, P., Jones, S. M., Leung, D. Y. M., Sampson, H. A., Sicherer, S. H., & Bunyavanich, S. (2018). Early-life gut microbiome and egg allergy. Allergy, 73(7), 1515–1524. https://doi.org/10.1111/all.13389
  • Feehley, T., Plunkett, C. H., Bao, R., Choi Hong, S. M., Culleen, E., Belda-Ferre, P., Campbell, E., Aitoro, R., Nocerino, R., Paparo, L., Andrade, J., Antonopoulos, D. A., Berni Canani, R., & Nagler, C. R. (2019). Healthy infants harbor intestinal bacteria that protect against food allergy. Nature Medicine, 25(3), 448–453. https://doi.org/10.1038/s41591-018-0324-z
  • Finkelman, F. D. (2007). Anaphylaxis: Lessons from mouse models. Journal of Allergy and Clinical Immunology, 120(3), 506–515. https://doi.org/10.1016/j.jaci.2007.07.033
  • Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science, 312(5778), 1355–1359. https://doi.org/10.1126/science.1124234
  • Gu, S., Yang, D., Liu, C., & Xue, W. (2023). The role of probiotics in prevention and treatment of food allergy. Food Science and Human Wellness, 12(3), 681–690. https://doi.org/10.1016/j.fshw.2022.09.001
  • Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273. https://doi.org/10.1126/science.1223490
  • Huang, C.-H., Ku, C.-Y., & Jan, T.-R. (2009). Diosgenin attenuates allergen-induced intestinal inflammation and IgE production in a murine model of food allergy. Planta Medica, 75(12), 1300–1305. https://doi.org/10.1055/s-0029-1185578
  • Huang, C.-H., Lin, Y.-C., & Jan, T.-R. (2017). Lactobacillus reuteri induces intestinal immune tolerance against food allergy in mice. Journal of Functional Foods, 31, 44–51. https://doi.org/10.1016/j.jff.2017.01.034
  • Huang, C.-H., Liu, D.-Z., & Jan, T.-R. (2010). Diosgenin, a plant-derived sapogenin, enhances regulatory T-cell immunity in the intestine of mice with food allergy. Journal of Natural Products, 73(6), 1033–1037. https://doi.org/10.1021/np900690z
  • Huang, C.-H., Lu, S.-Y., & Tsai, W.-C. (2020). Relevant fecal microbes isolated from mice with food allergy elicited intestinal cytokine/chemokine network and T-cell immune responses. Bioscience of Microbiota, Food and Health, 39(4), 234–242. https://doi.org/10.12938/bmfh.2020-014
  • Iribarren, C., Magnusson, M. K., Vigsnæs, L. K., Aziz, I., Amundsen, I. D., Šuligoj, T., Juge, N., Patel, P., Sapnara, M., Johnsen, L., Sørensen, N., Sundin, J., Törnblom, H., Simrén, M., & Öhman, L. (2021). The effects of human milk oligosaccharides on gut microbiota, metabolite profiles and host mucosal response in patients with irritable bowel syndrome. Nutrients, 13(11), 3836. https://doi.org/10.3390/nu13113836
  • Jin, Q., Ren, F., Dai, D., Sun, N., Qian, Y., & Song, P. (2023). The causality between intestinal flora and allergic diseases: Insights from a bi-directional two-sample Mendelian randomization analysis. Frontiers in Immunology, 14, 1121273.
  • Kumar, S., Verma, A. K., Das, M., & Dwivedi, P. D. (2012). Molecular mechanisms of IgE mediated food allergy. International Immunopharmacology, 13(4), 432–439. https://doi.org/10.1016/j.intimp.2012.05.018
  • Ling, Z., Li, Z., Liu, X., Cheng, Y., Luo, Y., Tong, X., Yuan, L., Wang, Y., Sun, J., Li, L., & Xiang, C. (2014). Altered fecal microbiota composition associated with food allergy in infants. Applied and Environmental Microbiology, 80(8), 2546–2554. https://doi.org/10.1128/AEM.00003-14
  • Liu, Q., Jing, W., & Wang, W. (2018). Bifidobacterium lactis ameliorates the risk of food allergy in Chinese children by affecting relative percentage of Treg and Th17 cells. Canadian Journal of Infectious Diseases and Medical Microbiology, 2018, 4561038.
  • Messina, M., & Venter, C. (2020). Recent surveys on food allergy prevalence. Nutrition Today, 55(1), 22–29. https://doi.org/10.1097/NT.0000000000000389
  • Mu, K., & Wu, Y. (2011). Separation and purification of Porphyra haitanensis polysaccharide and determination of its constitution. Journal of Chinese Institute of Food Science and Technology, 11(1), 159.
  • Osumi, Y., Kawai, M., Amano, H., & Noda, H. (2002). Physiological activities of oligosaccharides derived from marine algae Porphyra yezoensis Porphyran. Fisheries Science, 68(Suppl. 2), 1441–1444. https://doi.org/10.2331/fishsci.68.sup2_1441
  • Persiyanova, E. V., Kuznetsova, T. A., & Silchenko, A. S. (2020). Effect of sulfated polysaccharides from marine hydrobionts on humoral immune response to ovalbumin in mice. Bulletin of Experimental Biology and Medicine, 169(2), 246–248. https://doi.org/10.1007/s10517-020-04860-3
  • Pluske, J. R., Thompson, M. J., Atwood, C. S., Bird, P. H., Williams, I. H., & Hartmann, P. E. (1996). Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows’ whole milk after weaning. British Journal of Nutrition, 76(3), 409–422. https://doi.org/10.1079/BJN19960046
  • Ray, B. (2006). Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features. Carbohydrate Polymers, 66(3), 408–416. https://doi.org/10.1016/j.carbpol.2006.03.027
  • Renz, H., Allen, K. J., Sicherer, S. H., Sampson, H. A., Lack, G., Beyer, K., & Oettgen, H. C. (2018). Food allergy. Nature Reviews Disease Primers, 4(1), 1–20. https://doi.org/10.1038/nrdp.2017.98
  • Rodriguez, B., Prioult, G., Hacini-Rachinel, F., Moine, D., Bruttin, A., Ngom-Bru, C., Labellie, C., Nicolis, I., Berger, B., Mercenier, A., Butel, M.-J., & Waligora-Dupriet, A.-J. (2012). Infant gut microbiota is protective against cow's milk allergy in mice despite immature ileal T-cell response. FEMS Microbiology Ecology, 79(1), 192–202. https://doi.org/10.1111/j.1574-6941.2011.01207.x
  • Shi, C., Pan, T., Cao, M., Liu, Q., Zhang, L., & Liu, G. (2015). Suppression of Th2 immune responses by the sulfated polysaccharide from Porphyra haitanensis in tropomyosin-sensitized mice. International Immunopharmacology, 24(2), 211–218. https://doi.org/10.1016/j.intimp.2014.11.019
  • Stefka, A. T., Feehley, T., Tripathi, P., Qiu, J., McCoy, K., Mazmanian, S. K., Tjota, M. Y., Seo, G.-Y., Cao, S., Theriault, B. R., Antonopoulos, D. A., Zhou, L., Chang, E. B., Fu, Y.-X., & Nagler, C. R. (2014). Commensal bacteria protect against food allergen sensitization. Proceedings of the National Academy of Sciences, 111(36), 13145–13150. https://doi.org/10.1073/pnas.1412008111
  • Vickery, B. P., Scurlock, A. M., Jones, S. M., & Burks, A. W. (2011). Mechanisms of immune tolerance relevant to food allergy. Journal of Allergy and Clinical Immunology, 127(3), 576–584. https://doi.org/10.1016/j.jaci.2010.12.1116
  • Vidarsson, G., Dekkers, G., & Rispens, T. (2014). IgG subclasses and allotypes: From structure to effector functions. Frontiers in Immunology, 5, 520. https://doi.org/10.3389/fimmu.2014.00520
  • Wang, J., Zhang, Q., Zhang, Z., & Li, Z. (2008). Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 42(2), 127–132. https://doi.org/10.1016/j.ijbiomac.2007.10.003
  • Wei, Y.-J., Fang, R.-E., Ou, J.-Y., Pan, C.-L., & Huang, C.-H. (2022). Modulatory effects of Porphyra-derived polysaccharides, oligosaccharides and their mixture on antigen-specific immune responses in ovalbumin-sensitized mice. Journal of Functional Foods, 96, 105209. https://doi.org/10.1016/j.jff.2022.105209
  • Wu, G., Gu, W., Chen, G., Cheng, H., Li, D., & Xie, Z. (2023). Interactions of tea polysaccharides with gut microbiota and their health-promoting effects to host: Advances and perspectives. Journal of Functional Foods, 102, 105468. https://doi.org/10.1016/j.jff.2023.105468
  • Wu, S.-C., Wen, T.-N., & Pan, C.-L. (2005). Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties. Fisheries Science, 71(5), 1149–1159. https://doi.org/10.1111/j.1444-2906.2005.01075.x
  • Zheng, P., Zhang, K., Lv, X., Liu, C., Wang, Q., & Bai, X. (2022). Gut microbiome and metabolomics profiles of allergic and non-allergic childhood asthma. Journal of Asthma and Allergy, 15, 419–435. https://doi.org/10.2147/JAA.S354870