460
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of multiplex immunochromatographic assay for the simultaneous detection of three polyether ionophore antibiotics in chicken muscle

, , &
Article: 2260124 | Received 05 Jul 2023, Accepted 12 Sep 2023, Published online: 03 Oct 2023

References

  • Abafe, O. A., Gatyeni, P., & Matika, L. (2020). A multi-class multi-residue method for the analysis of polyether ionophores, tetracyclines and sulfonamides in multi-matrices of animal and aquaculture fish tissues by ultra-high performance liquid chromatography tandem mass spectrometry. Food Additives & Contaminants: Part A, 37(3), 438–450. https://doi.org/10.1080/19440049.2019.1705399
  • Alexandratos, N., & Bruinsma, J. (n.d.). World agriculture towards 2030/2050: The 2012 revision.
  • Chen, X., Gu, Y., Singh, K., Shang, C., Barzegar, M., Jiang, S., & Huang, S. (2014). Maduramicin inhibits proliferation and induces apoptosis in myoblast cells. PLoS ONE, 9(12), e115652. https://doi.org/10.1371/journal.pone.0115652
  • Chen, Y., Zhao, K., Huang, J., Li, M., Sun, X., & Li, J. (2021). Detection of salinomycin and lasalocid in chicken liver by icELISA based on functional bispecific single-chain antibody (scDb) and interpretation of molecular recognition mechanism. Analytical and Bioanalytical Chemistry, 413(28), 7031–7041. https://doi.org/10.1007/s00216-021-03666-0
  • Corah, L. R. (1991). Polyether lonophores — Effect on rumen function in feedlot cattle. Veterinary Clinics of North America: Food Animal Practice, 7(1), 127–132. https://doi.org/10.1016/S0749-0720(15)30813-6
  • Dorne, J. L. C. M., Fernández-Cruz, M. L., Bertelsen, U., Renshaw, D. W., Peltonen, K., Anadon, A., Feil, A., Sanders, P., Wester, P., & Fink-Gremmels, J. (2013). Risk assessment of coccidostatics during feed cross-contamination: Animal and human health aspects. Toxicology and Applied Pharmacology, 270(3), 196–208. https://doi.org/10.1016/j.taap.2010.12.014
  • Dutton, C. J., Banks, B. J., & Cooper, C. B. (1995). Polyether ionophores. Natural Product Reports, 12(2), 165–181. https://doi.org/10.1039/np9951200165
  • Foubert, A., Beloglazova, N. V., Gordienko, A., Tessier, M. D., Drijvers, E., Hens, Z., & Saeger, S. D. (2017). Development of a rainbow lateral flow immunoassay for the simultaneous detection of four mycotoxins. Journal of Agricultural and Food Chemistry, 65(33), 7121–7130. https://doi.org/10.1021/acs.jafc.6b04157
  • Gao, X., Peng, L., Ruan, X., Chen, X., Ji, H., Ma, J., Ni, H., Jiang, S., & Guo, D. (2018). Transcriptome profile analysis reveals cardiotoxicity of maduramicin in primary chicken myocardial cells. Archives of Toxicology, 92(3), 1267–1281. https://doi.org/10.1007/s00204-017-2113-8
  • Gu, H., Liu, L., Song, S., Kuang, H., & Xu, C. (2016). Development of an immunochromatographic strip assay for ractopamine detection using an ultrasensitive monoclonal antibody. Food and Agricultural Immunology, 27(4), 471–483. https://doi.org/10.1080/09540105.2015.1126808
  • Guo, L., Xu, L., Song, S., Liu, L., & Kuang, H. (2018). Development of an immunochromatographic strip for the rapid detection of maduramicin in chicken and egg samples. Food and Agricultural Immunology, 29(1), 458–469. https://doi.org/10.1080/09540105.2017.1401045
  • Huang, J., Zhao, K., Li, M., Chen, Y., Liang, X., & Li, J. (2021). Development of an immunomagnetic bead clean-up ELISA method for detection of Maduramicin using single-chain antibody in chicken muscle. Food and Agricultural Immunology, 32(1), 820–836. https://doi.org/10.1080/09540105.2021.1998388
  • Kadykalo, S., Roberts, T., Thompson, M., Wilson, J., Lang, M., & Espeisse, O. (2018). The value of anticoccidials for sustainable global poultry production. International Journal of Antimicrobial Agents, 51(3), 304–310. https://doi.org/10.1016/j.ijantimicag.2017.09.004
  • Kong, D., Liu, L., Song, S., Suryoprabowo, S., Li, A., Kuang, H., Wang, L., & Xu, C. (2016). A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale, 8(9), 5245–5253. https://doi.org/10.1039/C5NR09171C
  • Lee, H. J., Cho, S. S., Simkhada, J. R., & Yoo, J. C. (2009). Monoclonal antibody production and immunochemical detection of polyether antibiotics. Archives of Pharmacal Research, 32(3), 437–441. https://doi.org/10.1007/s12272-009-1318-7
  • Li, X., Wen, K., Chen, Y., Wu, X., Pei, X., Wang, Q., Liu, A., & Shen, J. (2015). Multiplex immunogold chromatographic assay for simultaneous determination of macrolide antibiotics in raw milk. Food Analytical Methods, 8, 2368–2375. https://doi.org/10.1007/s12161-015-0130-x
  • Liu, L., Xu, L., Suryoprabowo, S., Song, S., & Kuang, H. (2018). Development of an immunochromatographic test strip for the detection of ochratoxin A in red wine. Food and Agricultural Immunology, 29(1), 434–444. https://doi.org/10.1080/09540105.2017.1401043
  • Mooney, D., Richards, K. G., Danaher, M., Grant, J., Gill, L., Mellander, P.-E., & Coxon, C. E. (2020). An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Science of the Total Environment, 746, 141116. https://doi.org/10.1016/j.scitotenv.2020.141116
  • Noack, S., Chapman, H. D., & Selzer, P. M. (2019). Anticoccidial drugs of the livestock industry. Parasitology Research, 118(7), 2009–2026. https://doi.org/10.1007/s00436-019-06343-5
  • Pei, X., Wang, Q., Li, X., Xie, J., Xie, S., Peng, T., Wang, C., Sun, Y., & Jiang, H. (2016). Provision of ultrasensitive quantitative gold immunochromatography for rapid monitoring of olaquindox in animal feed and water samples. Food Analytical Methods, 9, 1919–1927. https://doi.org/10.1007/s12161-015-0360-y
  • Rokka, M., Jestoi, M., & Peltonen, K. (2013). Trace level determination of polyether ionophores in feed. BioMed Research International, 2013, 1–12. https://doi.org/10.1155/2013/151363
  • Shimshoni, J. A., Britzi, M., Pozzi, P. S., Edery, N., Berkowitz, A., Bouznach, A., Cuneah, O., Soback, S., Bellaiche, M., Younis, A., Blech, E., Oren, P., Galon, N., Shlosberg, A., & Perl, S. (2014). Acute maduramicin toxicosis in pregnant gilts. Food and Chemical Toxicology, 68, 283–289. https://doi.org/10.1016/j.fct.2014.03.034
  • Silva, F. R. N., Bortolotte, A. R., Braga, P. A. D. C., Reyes, F. G. R., & Arisseto-Bragotto, A. P. (2020). Polyether ionophores residues in Minas Frescal cheese by UHPLC-MS/MS. Food Additives & Contaminants: Part B, 13(2), 130–138. https://doi.org/10.1080/19393210.2020.1739149
  • Silva, F. R. N., Pereira, M. U., Spisso, B. F., & Arisseto-Bragotto, A. P. (2021). Polyether ionophores residues in pasteurized milk marketed in the state of São Paulo, Brazil: Occurrence and exposure assessment. Food Research International, 141, 110015. https://doi.org/10.1016/j.foodres.2020.110015
  • Song, S., Suryoprabowo, S., Liu, L., Kuang, H., Xu, L., Ma, W., & Wu, X. (2019). Development of monoclonal antibody-based colloidal gold immunochromatographic assay for analysis of halofuginone in milk. Food and Agricultural Immunology, 30(1), 112–122. https://doi.org/10.1080/09540105.2018.1550058
  • Song, Y., Song, S., Liu, L., Kuang, H., Guo, L., & Xu, C. (2016). Simultaneous detection of tylosin and tilmicosin in honey using a novel immunoassay and immunochromatographic strip based on an innovative hapten. Food and Agricultural Immunology, 27(3), 314–328. https://doi.org/10.1080/09540105.2015.1089843
  • Sun, Z., Li, M., Qian, S., Gu, Y., Huang, J., & Li, J. (2023). Development of a detection method for 10 non-steroidal anti-inflammatory drugs residues in four swine tissues by ultra-performance liquid chromatography with tandem mass spectrometry. Journal of Chromatography B, 1223, 123722. https://doi.org/10.1016/j.jchromb.2023.123722
  • The National Archives. (n.d.). Commission Directive 2009/8/EC of 10 February 2009 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels of unavoidable carry-over of coccidiostats or histomonostats in non-target feed (Text with EEA relevance). https://Webarchive.Nationalarchives.Gov.Uk/Eu-Exit/Https://Eur-Lex.Europa.Eu/Legal-Content/EN/TXT/?Uri=CELEX:32009L0008; Retrieved May 26, 2023, from https://www.legislation.gov.uk/eudr/2009/8/introduction
  • Wang, B., Liu, J., Zhao, X., Xie, K., Diao, Z., Zhang, G., Zhang, T., & Dai, G. (2020). Determination of eight coccidiostats in eggs by liquid–liquid extraction–solid-phase extraction and liquid chromatography–tandem mass spectrometry. Molecules, 25(4), 987. https://doi.org/10.3390/molecules25040987
  • Wang, C., Li, X., Peng, T., Wang, Z., Wen, K., & Jiang, H. (2017). Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control, 77, 1–7. https://doi.org/10.1016/j.foodcont.2017.01.016
  • Wang, Z., Cheng, L., Shi, W., Zhang, S., & Shen, J. (2010). Fluorescence polarization immunoassay for salinomycin based on monoclonal antibodies. Science China Chemistry, 53(3), 553–555. https://doi.org/10.1007/s11426-010-0085-0
  • Wang, Z., Wu, X., Liu, L., Xu, L., Kuang, H., & Xu, C. (2020). Rapid and sensitive detection of diclazuril in chicken samples using a gold nanoparticle-based lateral-flow strip. Food Chemistry, 312, 126116. https://doi.org/10.1016/j.foodchem.2019.126116
  • Xu, X., Liu, L., Cui, G., Wu, X., & Kuang, H. (2019). Development of an immunochromatography assay for salinomycin and methyl salinomycin in honey. Food and Agricultural Immunology, 30(1), 995–1006. https://doi.org/10.1080/09540105.2019.1649370