905
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential effect of kaempferol against various malignancies: recent advances and perspectives

, , , , , , , , ORCID Icon, , , & ORCID Icon show all
Article: 2265690 | Received 07 Jun 2023, Accepted 27 Sep 2023, Published online: 27 Nov 2023

References

  • Abdullah, A., Talwar, P., d’Hellencourt, C. L., & Ravanan, P. (2019). IRE 1α is critical for kaempferol-induced neuroblastoma differentiation. The FEBS Journal, 286(7), 1375–1392. https://doi.org/10.1111/febs.14776
  • Alam, W., Khan, H., Shah, M. A., Cauli, O., & Saso, L. (2020). Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules, 25(18), 4073. https://doi.org/10.3390/molecules25184073
  • Alkhalidy, H., Moore, W., Wang, Y., Luo, J., McMillan, R. P., Zhen, W., & Liu, D. (2018). The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Molecules, 23(9), 2338. https://doi.org/10.3390/molecules23092338
  • Azevedo, C., Correia-Branco, A., Araújo, J. R., Guimaraes, J. T., Keating, E., & Martel, F. (2015). The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutrition and Cancer, 67(3), 504–513. https://doi.org/10.1080/01635581.2015.1002625
  • Barliana, M. I., Diantini, A., Subarnas, A., & Abdulah, R. (2022). Kaempferol-3-O-Rhamnoside inhibits the proliferation of Jurkat cells through Jun amino-terminal kinase signaling. The Natural Products Journal, 12(4), 57–63. https://doi.org/10.2174/2210315511666210826102427
  • Barve, A., Chen, C., Hebbar, V., Desiderio, J., Saw, C. L. L., & Kong, A. N. (2009). Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharmaceutics & Drug Disposition, 30(7), 356–365. https://doi.org/10.1002/bdd.677
  • Beg, T., Jyoti, S., Naz, F., Ali, F., Ali, S. K., Reyad, A. M., & Siddique, Y. H. (2018). Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer's disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 17(6), 421–429.
  • Bian, Y., Lei, J., Zhong, J., Wang, B., Wan, Y., Li, J., Liao, C., He, Y., Liu, Z., Ito, K., & Zhang, B. (2022). Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. The Journal of Nutritional Biochemistry, 99, 108840. https://doi.org/10.1016/j.jnutbio.2021.108840
  • Budisan, L., Gulei, D., Jurj, A., Braicu, C., Zanoaga, O., Cojocneanu, R., Pop, L., Raduly, L., Barbat, A., Moldovan, A., Moldovan, C., Tigu, A., Ionescu, C., Atanasov, A., Irimie, A., & Berindan-Neagoe, I. (2019). Inhibitory effect of CAPE and kaempferol in colon cancer cell lines—possible implications in new therapeutic strategies. International Journal of Molecular Sciences, 20(5), 1199. https://doi.org/10.3390/ijms20051199
  • Catalán, M., Rodríguez, C., Olmedo, I., Carrasco-Rojas, J., Rojas, D., MolinaBerríos, A., Díaz-Dosque, M., & Jara, J. A. (2020). Kaempferol induces cell death and sensitizes human head and neck squamous cell carcinoma cell lines to cisplatin. In W. E. Crusio, H. Dong, H. H. Radeke, N. Rezaei, O. Steinlein, & J. Xiao (Eds.), Cell biology and translational medicine (Vol. 12, pp. 95–109). Springer.
  • Chen, M., Xiao, J., El-Seedi, H. R., Woźniak, K. S., Daglia, M., Little, P. J., & Xu, S. (2022). Kaempferol and atherosclerosis: From mechanism to medicine. Critical Reviews in Food Science and Nutrition, 1–19. https://doi.org/10.1080/10408398.2022.2121261
  • Choi, J. H., Park, S. E., Kim, S. J., & Kim, S. (2015). Kaempferol inhibits thrombosis and platelet activation. Biochimie, 115, 177–186. https://doi.org/10.1016/j.biochi.2015.06.001
  • Choi, Y. J., Lee, Y. H., & Lee, S.-T. (2015). Galangin and kaempferol suppress phorbol12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 c. Molecules and Cells, 38(2), 151.
  • Chung, M. J., Pandey, R. P., Choi, J. W., Sohng, J. K., Choi, D. J., & Park, Y. I. (2015). Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. International Immunopharmacology, 25(2), 302–310. https://doi.org/10.1016/j.intimp.2015.01.031
  • Da, J., Xu, M., Wang, Y., Li, W., Lu, M., & Wang, Z. (2019). Kaempferol promotes apoptosis while inhibiting cell proliferation via androgen-dependent pathway and suppressing vasculogenic mimicry and invasion in prostate cancer. Analytical Cellular Pathology, 2019, 10.
  • Devi, K. P., Malar, D. S., Nabavi, S. F., Sureda, A., Xiao, J., Nabavi, S. M., & Daglia, M. (2015). Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research, 99, 1–10. https://doi.org/10.1016/j.phrs.2015.05.002
  • Duan, L., Ding, W., Liu, X., Cheng, X., Cai, J., Hua, E., & Jiang, H. (2017). Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microbial Cell Factories, 16(1), 1–10. https://doi.org/10.1186/s12934-017-0774-x
  • Duračka, M., Debacker, M., Bučko, O., Lukač, N., & Tvrda, E. (2019). The effect of kaempferol and naringenin may improve the in-vitro quality of stored boar semen. Journal of Central European Agriculture, 20(4), 1069–1075. https://doi.org/10.5513/JCEA01/20.4.2294
  • Ekalu, A., & Habila, J. D. (2020). Flavonoids: Isolation, characterization, and health benefits. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 1–14. https://doi.org/10.1186/s43088-020-00065-9
  • Estakhri, F., Panjehshahin, M. R., Tanideh, N., Gheisari, R., Mahmoodzadeh, A., Azarpira, N., & Gholijani, N. (2020). The effect of kaempferol and apigenin on allogenic synovial membrane-derived stem cells therapy in knee osteoarthritic male rats. The Knee, 27(3), 817–832. https://doi.org/10.1016/j.knee.2020.03.005
  • Fouzder, C., Mukhuty, A., & Kundu, R. (2021). Kaempferol inhibits Nrf2 signaling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Archives of Biochemistry and Biophysics, 697, 108700. https://doi.org/10.1016/j.abb.2020.108700
  • Haeri, V., Karimi, E., & Oskoueian, E. (2023). Synthesized nanoliposome-encapsulated kaempferol attenuates liver health parameters and gene expression in mice challenged by cadmium-induced toxicity. Biotechnology and Applied Biochemistry, 70(1), 429–438. https://doi.org/10.1002/bab.2368
  • Han, X., Zhao, S., Song, H., Xu, T., Fang, Q., Hu, G., & Sun, L. (2021). Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: Implications in Parkinson's disease. Redox Biology, 41, 101911. https://doi.org/10.1016/j.redox.2021.101911
  • Hassan, E. S., Hassanein, N. M., & Ahmed, H. M. S. (2021). Probing the chemoprevention potential of the antidepressant fluoxetine combined with epigallocatechin gallate or kaempferol in rats with induced early stage colon carcinogenesis. Journal of Pharmacological Sciences, 145(1), 29–41. https://doi.org/10.1016/j.jphs.2020.10.005
  • He, C., Yang, J., Jiang, X., Liang, X., Yin, L., Yin, Z., Geng, Y., Zhong, Z., Song, X., Zou, Y., Li, L., Zhang, W., & Lv, C. (2019). Kaempferol alleviates LPS-ATP mediated inflammatory injury in splenic lymphocytes via regulation of the pyroptosis pathway in mice. Immunopharmacology and Immunotoxicology, 41(5), 538–548. https://doi.org/10.1080/08923973.2019.1666405
  • Hosseini, A., Alipour, A., Baradaran Rahimi, V., & Askari, V. R. (2023). A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation. BioFactors, 49(2), 322–350. https://doi.org/10.1002/biof.1923
  • Hu, W. H., Dai, D. K., Zheng, B. Z. Y., Duan, R., Chan, G. K. L., Dong, T. T. X., Qin Q.-W., & Tsim, K. W. K. (2021). The binding of kaempferol-3-O-rutinoside to vascular endothelial growth factor potentiates anti-inflammatory efficiencies in lipopolysaccharide-treated mouse macrophage RAW264. 7 cells. Phytomedicine, 80, 153400. https://doi.org/10.1016/j.phymed.2020.153400
  • Hu, W. H., Wang, H. Y., Xia, Y. T., Dai, D. K., Xiong, Q. P., Dong, T. T. X., Duan, R., Chan, G. K.-L., Qin, Q.-W., & Tsim, K. W. K. (2020). Kaempferol, a major flavonoid in ginkgo folium, potentiates angiogenic functions in cultured endothelial cells by binding to vascular endothelial growth factor. Frontiers in Pharmacology, 11, 526. https://doi.org/10.3389/fphar.2020.00526
  • Huang, W. W., Chiu, Y. J., Fan, M. J., Lu, H. F., Yeh, H. F., Li, K. H., Chen, P. Y., Chung, J. G., & Yang, J. S. (2010). Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Molecular Nutrition & Food Research, 54(11), 1585–1595. https://doi.org/10.1002/mnfr.201000005
  • Imran, M., Rauf, A., Shah, Z. A., Saeed, F., Imran, A., Arshad, M. U., Ahmad, B., Bawazeer, S., Atif, M., Peters, D. G., & Mubarak, M. S. (2019). Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytotherapy Research, 33(2), 263–275. https://doi.org/10.1002/ptr.6227
  • Jamalan, M., Ghaffari, M. A., Hoseinzadeh, P., Hashemitabar, M., & Zeinali, M. (2016). Human sperm quality and metal toxicants: Protective effects of some flavonoids on male reproductive function. International Journal of Fertility & Sterility, 10(2), 215.
  • Jan, R., Khan, M., Asaf, S., Asif, S., Lubna, & Kim, K.-M. (2022). Bioactivity and therapeutic potential of kaempferol and quercetin: New insights for plant and human health. Plants, 11(19), 2623. https://doi.org/10.3390/plants11192623
  • Jia, Z., Chen, A., Wang, C., He, M., Xu, J., Fu, H., Zhang, X., Lv, W., & Guo, Z. (2019). Amelioration effects of kaempferol on immune response following chronic intermittent cold-stress. Research in Veterinary Science, 125, 390–396. https://doi.org/10.1016/j.rvsc.2019.08.012
  • Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Punia, S., & Mukherjee, T. K. (2017). Kaempferol–A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. Journal of Functional Foods, 30, 203–219. https://doi.org/10.1016/j.jff.2017.01.022
  • Khazdair, M. R., Anaeigoudari, A., & Agbor, G. A. (2021). Anti-viral and anti-inflammatory effects of kaempferol and quercetin and COVID-2019: A scoping review. Asian Pacific Journal of Tropical Biomedicine, 11(8), 327. https://doi.org/10.4103/2221-1691.319567
  • Kim, B.-W., Lee, E.-R., Min, H.-M., Jeong, H.-S., Ahn, J.-Y., Kim, J.-H., Choi, H.-Y., Choi, H., Kim, E. Y., Park, S. P., & Cho, S.-G. (2008). Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biology & Therapy, 7(7), 1080–1089. 48. https://doi.org/10.4161/cbt.7.7.6164
  • Kim, J. K., & Park, S. U. (2020). Recent studies on kaempferol and its biological and pharmacological activities. EXCLI Journal, 19(2019), 627–634.
  • Lee, G. A., Choi, K. C., & Hwang, K. A. (2017). Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environmental Toxicology and Pharmacology, 49, 48–57. https://doi.org/10.1016/j.etap.2016.11.016
  • Lee, Y. J., Choi, H. S., Seo, M. J., Jeon, H. J., Kim, K. J., & Lee, B. Y. (2015). Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish. Food & Function, 6(8), 2824–2833. https://doi.org/10.1039/C5FO00481K
  • Li, S., Yan, T., Deng, R., Jiang, X., Xiong, H., Wang, Y., Yu, Q., Wang, X., Chen, C., & Zhu, Y. (2017). Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. OncoTargets and Therapy, 10, 4809–4819. https://doi.org/10.2147/OTT.S140886
  • Liu, C., Liu, H., Lu, C., Deng, J., Yan, Y., Chen, H., Wang, Y., Liang, C.-L., Wei, J., Han, L., & Dai, Z. (2019). Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clinical & Experimental Immunology, 198(3), 403–415. https://doi.org/10.1111/cei.13363
  • Ma, Y., Liu, Y., Sun, A., Du, Y., Ye, M., Pu, X., & Qi, X. (2017). Intestinal absorption and neuroprotective effects of kaempferol-3-O-rutinoside. RSC Advances, 7(50), 31408–31416. https://doi.org/10.1039/C7RA05415G
  • MacPherson, L., & Matthews, J. (2010). Inhibition of aryl hydrocarbon receptor dependent transcription by resveratrol or kaempferol is independent of estrogen receptor α expression in human breast cancer cells. Cancer Letters, 299(2), 119–129. https://doi.org/10.1016/j.canlet.2010.08.010
  • Mikani, A. (2019). Effect of kaempferol on ecdysteroid titer and oocyte size via tachykinin-4 in cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Crop Protection, 8(2), 153–162.
  • Molitorisova, M., Sutovska, M., Kazimierova, I., Barborikova, J., Joskova, M., Novakova, E., & Franova, S. (2021). The anti-asthmatic potential of flavonol kaempferol in an experimental model of allergic airway inflammation. European Journal of Pharmacology, 891, 173698. https://doi.org/10.1016/j.ejphar.2020.173698
  • Murden, K., San, K., Martino, A., & Ezekiel, U. (2016). The effect of phytochemicals on a chemoresistant, epithelial-mesenchymal transitioned, colorectal cancer cell line. The FASEB Journal, 30, 1090–1092. https://doi.org/10.1096/fasebj.30.1_supplement.1090.2
  • Nandi, S. K., Chatterjee, N., Roychowdhury, T., Pradhan, A., Moiz, S., Manna, K., Sarkar, D. K., Dhar, P., Dutta, A., Mukhopadhyay, S., & Bhattacharya, R. (2023). Kaempferol with verapamil impeded panoramic chemoevasion pathways in breast cancer through ROS overproduction and disruption of lysosomal biogenesis. Phytomedicine, 113, 154689. https://doi.org/10.1016/j.phymed.2023.154689
  • Naz, F., Jyoti, S., & Siddique, Y. H. (2020). Effect of kaempferol on the transgenic Drosophila model of Parkinson’s disease. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-019-56847-4
  • Nejabati, H. R., & Roshangar, L. (2022). Kaempferol as a potential neuroprotector in Alzheimer's disease. Journal of Food Biochemistry, 46(12), e14375. https://doi.org/10.1111/jfbc.14375
  • Noor, N., Jhan, F., Gani, A., Raina, I. A., & Shah, M. A. (2023). Nutraceutical and toxicological evaluation of hydrogels architected using resistant starch nanoparticles and gum acacia for controlled release of kaempferol. Food Structure, 35, 100307. https://doi.org/10.1016/j.foostr.2022.100307
  • Pan, X., Liu, X., Zhao, H., Wu, B., & Liu, G. (2020). Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods, 74, 104140. https://doi.org/10.1016/j.jff.2020.104140
  • Qattan, M. Y., Khan, M. I., Alharbi, S. H., Verma, A. K., Al-Saeed, F. A., Abduallah, A. M., & Al Areefy, A. A. (2022). Therapeutic importance of kaempferol in the treatment of cancer through the modulation of cell signaling pathways. Molecules, 27(24), 8864. https://doi.org/10.3390/molecules27248864
  • Quintal Martínez, J. P., & Segura Campos, M. R. (2023). Flavonoids as a therapeutical option for the treatment of thrombotic complications associated with COVID-19. Phytotherapy Research, 37(3), 1092–1114. https://doi.org/10.1002/ptr.7700
  • Rakha, A., Umar, N., Rabail, R., Butt, M. S., Kieliszek, M., Hassoun, A., & Aadil, R. M. (2022). Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomedicine & Pharmacotherapy, 156, 113945. https://doi.org/10.1016/j.biopha.2022.113945
  • Ren, J., Lu, Y., Qian, Y., Chen, B., Wu, T., & Ji, G. (2019). Recent progress regarding kaempferol for the treatment of various diseases. Experimental and Therapeutic Medicine, 18(4), 2759–2776.
  • Saeed, M., Naseer, S., Hussain, S., & Iqbal, M. (2019). Phytochemical composition and pharmacological effects of cassia fistula. Scientific Inquiry and Review, 4(1), 59–69. https://doi.org/10.32350/sir.41.05
  • Santos, J. M. S., Lins, T. L. B. G., Barberino, R. S., Menezes, V. G., Gouveia, B. B., & Matos, M. H. T. (2019). Kaempferol promotes primordial follicle activation through the phosphatidylinositol 3-kinase/protein kinase B signaling pathway and reduces DNA fragmentation of sheep preantral follicles cultured in-vitro. Molecular Reproduction and Development, 86(3), 319–329. https://doi.org/10.1002/mrd.23107
  • Seydi, E., Salimi, A., Rasekh, H. R., Mohsenifar, Z., & Pourahmad, J. (2018). Selective cytotoxicity of luteolin and kaempferol on cancerous hepatocytes obtained from rat model of hepatocellular carcinoma: Involvement of ROSmediated mitochondrial targeting. Nutrition and Cancer, 70(4), 594–604. https://doi.org/10.1080/01635581.2018.1460679
  • Shahbaz, M., Imran, M., Alsagaby, S. A., Naeem, H., Al Abdulmonem, W., Hussain, M., Abdelgawad, M. A., El-Ghorab, A. H., Ghoneim, M. M., El-Sherbiny, M., Atoki, A. V., & Awuchi, C. G. (2023). Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. International Journal of Food Properties, 26(1), 1140–1166. https://doi.org/10.1080/10942912.2023.2205040
  • Sharma, A., Sinha, S., & Shrivastava, N. (2022). Apigenin and kaempferol as novel renoprotective agent against cisplatin-induced toxicity: An in-vitro study. Natural Product Research, 36(23), 6085–6090. https://doi.org/10.1080/14786419.2022.2045603
  • Sheik, A., Kim, K., Varaprasad, G. L., Lee, H., Kim, S., Kim, E., Shin, J.-Y., Oh, S. Y., & Huh, Y. S. (2021). The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine, 91, 153698. https://doi.org/10.1016/j.phymed.2021.153698
  • Shrivastava, S., Uthra, C., Reshi, M. S., & Shukla, S. (2016). Protective role of kaempferol against acrylamide intoxication. Free Radicals and Antioxidants, 7(1), 36–42. https://doi.org/10.5530/fra.2017.1.6
  • Siddique, Y. H. (2021). Neurodegenerative diseases and flavonoids: Special reference to kaempferol. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 20(4), 327–342.
  • Siegelin, M. D., Reuss, D. E., Habel, A., Herold-Mende, C., & Von Deimling, A. (2008). The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of survivin. Molecular Cancer Therapeutics, 7(11), 3566–3574.
  • Simington, L. (2022). Quantification of kaempferol conjugates in watercress juice and methanol extract: A study using HPLC and protein binding.
  • Song, W., Dang, Q., Xu, D., Chen, Y., Zhu, G., Wu, K., Zeng, J., Long, Q., Wang, X., He, D., Li L. (2014). Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncology Reports, 31(3), 1350–1356. https://doi.org/10.3892/or.2014.2965
  • Suguna, M., & Umesha, S. (2023). HR-LCMS Profiling of phytochemical constituents and evaluation of antioxidant, antibacterial, anti-cancerous and anti-inflammatory potentials, plasma biocompatibility and cytotoxicity of Grewia orbiculata Rottler. Vegetos, 36(3), 1–12. https://doi.org/10.1007/s42535-022-00530-z
  • Tahir, M. S., Almezgagi, M., Zhang, Y., Bashir, A., Abdullah, H. M., Gamah, M., Wang, X., Zhu, Q., Shen, X., Ma, Q., Ali, M., Solangi, Z. A., Malik, W. S., & Zhang, W. (2021). Mechanistic new insights of flavonols on neurodegenerative diseases. Biomedicine & Pharmacotherapy, 137, 111253. https://doi.org/10.1016/j.biopha.2021.111253
  • Tamer, F., Tullemans, B. M., Kuijpers, M. J., Claushuis, T. A., & Heemskerk, J. W. (2022). Nutrition phytochemicals affecting platelet signaling and responsiveness: Implications for thrombosis and hemostasis. Thrombosis and Haemostasis, 122(06), 879–894.
  • Torres-Villarreal, D., Camacho, A., Castro, H., Ortiz-Lopez, R., & De la Garza, A. L. (2019). Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. Journal of Physiology and Biochemistry, 75(1), 83–88. https://doi.org/10.1007/s13105-018-0659-4
  • Tu, L. Y., Pi, J., Jin, H., Cai, J. Y., & Deng, S. P. (2016). Synthesis, characterization and anti-cancer activity of kaempferol-zinc(II) complex. Bioorganic & Medicinal Chemistry Letters, 26(11), 2730–2734. https://doi.org/10.1016/j.bmcl.2016.03.091
  • Wang, F., Wang, L., Qu, C., Chen, L., Geng, Y., Cheng, C., Yu, S., Wang, D., Yang, L., & Meng, Z. (2021). Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling. BMC Cancer, 21(1), 1–11. https://doi.org/10.1186/s12885-020-07763-8
  • Wang, J., Mao, J., Wang, R., Li, S., Wu, B., & Yuan, Y. (2020). Kaempferol protects against cerebral ischemia reperfusion injury through intervening oxidative and inflammatory stress induced apoptosis. Frontiers in Pharmacology, 11, 424. https://doi.org/10.3389/fphar.2020.00424
  • Wang, T., Wu, Q., & Zhao, T. (2020). Preventive effects of kaempferol on high-fat diet-induced obesity complications in C57BL/6 mice. BioMed Research International, 2020. Article ID 4532482. https://doi.org/10.1155/2020/4532482
  • Wang, X., Yang, Y., An, Y., & Fang, G. (2019). The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomedicine & Pharmacotherapy, 117, 109086. https://doi.org/10.1016/j.biopha.2019.109086
  • Wu, B., Luo, H., Zhou, X., Cheng, C. Y., Lin, L., Liu, B. L., Liu, K., Li, P., & Yang, H. (2017). Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: Therapeutical effects of kaempferol. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(9), 2307–2318. https://doi.org/10.1016/j.bbadis.2017.06.011
  • Xu, X. H., Zhao, C., Peng, Q., Xie, P., & Liu, Q. H. (2017). Kaempferol inhibited VEGF and PGF expression and in-vitro angiogenesis of HRECs under diabetic-like environment. Brazilian Journal of Medical and Biological Research, 50(3), 1–7. https://doi.org/10.1590/1414-431X20165396
  • Yang, G., Xing, J., Aikemu, B., Sun, J., & Zheng, M. (2021a). Kaempferol exhibits a synergistic effect with doxorubicin to inhibit proliferation, migration, and invasion of liver cancer. Oncology Reports, 45(4), 1–10. https://doi.org/10.3892/or.2021.7952
  • Yang, L., Gao, Y., Bajpai, V. K., El-Kammar, H. A., Simal-Gandara, J., Cao, H., & Xiao, J. (2021b). Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Critical Reviews in Food Science and Nutrition, 63(16), 1–17. https://doi.org/10.1080/10408398.2021.1980762
  • Yao, H., Sun, J., Wei, J., Zhang, X., Chen, B., & Lin, Y. (2020). Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway. Frontiers in Pharmacology, 11, 1118. https://doi.org/10.3389/fphar.2020.01118
  • Yao, S., Wang, X., Li, C., Zhao, T., Jin, H., & Fang, W. (2016). Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway. Tumor Biology, 37(8), 10247–10256. https://doi.org/10.1007/s13277-016-4912-6
  • Yao, X., Jiang, H., NanXu, Y., Piao, X., Gao, Q., & Kim, N. H. (2019). Kaempferol attenuates mitochondrial dysfunction and oxidative stress induced by H2O2 during porcine embryonic development. Theriogenology, 135, 174–180. https://doi.org/10.1016/j.theriogenology.2019.06.013
  • Yeon, M. J., Lee, M. H., Kim, D. H., Yang, J. Y., Woo, H. J., Kwon, H. J., Moon, C., Kim, S.-H., & Kim, J. B. (2019). Anti-inflammatory effects of kaempferol on Helicobacter pylori-induced inflammation. Bioscience, Biotechnology, and Biochemistry, 83(1), 166–173. https://doi.org/10.1080/09168451.2018.1528140
  • Zabela, V., Sampath, C., Oufir, M., Moradi-Afrapoli, F., Butterweck, V., & Hamburger, M. (2016). Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats. Fitoterapia, 115, 189–197. https://doi.org/10.1016/j.fitote.2016.10.008
  • Zang, Y., Zhang, L., Igarashi, K., & Yu, C. (2015). The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food & Function, 6(3), 834–841. https://doi.org/10.1039/C4FO00844H
  • Zeng, Z. C., Jiang, J., Wang, X. J., Wei, K. N., Liang, H. S., Zeng, L. X., Xu, Y., Xie, S.-J., Meng, Z., Yang, X.-J., Guo, A.-W., & Wang, H. L. (2022). Kaempferol ameliorates in-vitro and in-vivo postovulatory oocyte ageing in mice. Reproductive BioMedicine Online, 45(6), 1065–1083. https://doi.org/10.1016/j.rbmo.2022.07.005
  • Zhang, K., Gu, L., Chen, J., Zhang, Y., Jiang, Y., Zhao, L., Bi, K., & Chen, X. (2015a). Preparation and evaluation of kaempferol–phospholipid complex for pharmacokinetics and bioavailability in SD rats. Journal of Pharmaceutical and Biomedical Analysis, 114, 168–175. https://doi.org/10.1016/j.jpba.2015.05.017
  • Zhang, Q., Wu, D., Wu, J., Ou, Y., Mu, C., Han, B., & Zhang, Q. (2015b). Improved blood–brain barrier distribution: Effect of borneol on the brain pharmacokinetics of kaempferol in rats by in-vivo microdialysis sampling. Journal of Ethnopharmacology, 162, 270–277. https://doi.org/10.1016/j.jep.2015.01.003
  • Zhang, S. S., Liu, M., Liu, D. N., Shang, Y. F., Du, G. H., & Wang, Y. H. (2022). Network pharmacology analysis and experimental validation of kaempferol in the treatment of ischemic stroke by inhibiting apoptosis and regulating neuroinflammation involving neutrophils. International Journal of Molecular Sciences, 23(20), 12694. https://doi.org/10.3390/ijms232012694
  • Zhang, Z., Guo, Y., Chen, M., Chen, F., Liu, B., & Shen, C. (2021). Kaempferol potentiates the sensitivity of pancreatic cancer cells to erlotinib via inhibition of the PI3K/AKT signaling pathway and epidermal growth factor receptor. Infammopharmacology, 29(5), 1587–1601. https://doi.org/10.1007/s10787-021-00848-1
  • Zhou, M., Ren, H., Han, J., Wang, W., Zheng, Q., & Wang, D. (2015). Protective effects of kaempferol against myocardial ischemia/reperfusion injury in isolated rat heart via antioxidant activity and inhibition of glycogen synthase kinase-3. Oxidative Medicine and Cellular Longevity, 2015. Article ID 481405. https://doi.org/10.1155/2015/481405
  • Zhu, X., Wang, X., Ying, T., Li, X., Tang, Y., Wang, Y., Yu, T., Sun, M., Zhao, J., Du, Y., & Zhang, L. (2022). Kaempferol alleviates the inflammatory response and stabilizes the pulmonary vascular endothelial barrier in LPS-induced sepsis through regulating the SphK1/S1P signaling pathway. Chemico-Biological Interactions, 368, 110221. https://doi.org/10.1016/j.cbi.2022.110221