772
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Overdose intake of Neu5Gc triggers colorectal inflammation and alters liver metabolism

, , , , , , , , , , & show all
Article: 2281274 | Received 27 Feb 2023, Accepted 27 Sep 2023, Published online: 22 Nov 2023

References

  • Banda, K., Gregg, C. J., Chow, R., Varki, N. M., & Varki, A. (2012). Metabolism of vertebrate amino sugars with N-glycolyl groups: Mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid. Journal of Biological Chemistry, 287(34), 28852–28864. https://doi.org/10.1074/jbc.M112.364182
  • Bardor, M., Nguyen, D. H., Diaz, S., & Varki, A. (2005). Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. Journal of Biological Chemistry, 280(6), 4228–4237. https://doi.org/10.1074/jbc.M412040200
  • Bashir, S., Fezeu, L. K., Leviatan Ben-Arye, S., Yehuda, S., Reuven, E. M., Szabo De Edelenyi, F., Fellah-Hebia, I., Le Tourneau, T., Imbert-Marcille, B. M., & Drouet, E. B. (2020). Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-santé study. BMC Medicine, 18(1), 1–19. https://doi.org/10.1186/s12916-020-01721-8
  • Bedi, A., Pasricha, P. J., Akhtar, A. J., Barber, J. P., Bedi, G. C., Giardiello, F. M., Zehnbauer, B. A.,Hamilton, S. R., & Jones, R. J. (1995). Inhibition of apoptosis during development of colorectalcancer. Cancer Research, 55(9), 1811–1816.
  • Ben-Arye S, L., Yu, H., Chen, X., & Padler-Karavani, V. (2017). Profiling anti-Neu5Gc IgG in human sera with a sialoglycan microarray assay. Journal of Visualized Experiments, (125). e56094.
  • Bergfeld, A. K., Pearce, O. M. T., Diaz, S. L., Pham, T., & Varki, A. (2012). Metabolism of vertebrate amino sugars with N-glycolyl groups: Elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. Journal of Biological Chemistry, 287(34), 28865–28881. https://doi.org/10.1074/jbc.M112.363549
  • Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-Seq quantification. Nature Biotechnology, 34(5), 525–527. https://doi.org/10.1038/nbt.3519
  • Chen, M., Sun, Q., Giovannucci, E., Mozaffarian, D., Manson, J. E., Willett, W. C., & Hu, F. B. (2014). Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Medicine, 12(1), 215. https://doi.org/10.1186/s12916-014-0215-1
  • Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018).. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England), 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560
  • Edwards, P., Cendan, J. C., Topping, D. B., Moldawer, L. L., MacKay, S., Copeland IIIE. M., & Lind, D. S. (1996). Tumor cell nitric oxide inhibits cell growthin vitro, but stimulates tumorigenesis and experimental lung metastasisin vivo. Journal of Surgical Research, 63(1), 49–52. https://doi.org/10.1006/jsre.1996.0221
  • Engstrand, J., Nilsson, H., Strömberg, C., Jonas, E., & Freedman, J. (2018). Colorectal cancer liver metastases – A population-based study on incidence, management and survival. BMC Cancer, 18(1), 78. https://doi.org/10.1186/s12885-017-3925-x
  • He, X., Li, Z., Tang, X., Zhang, L., Wang, L., He, Y., Jin, T., & Yuan, D. (2018). Age- and sex-related differences in body composition in healthy subjects aged 18 to 82 years. Medicine, 97(25), e11152. https://doi.org/10.1097/MD.0000000000011152
  • Hedlund, M., Padler-Karavani, V., Varki, N. M., & Varki, A. (2008). Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proceedings of the National Academy of Sciences, 105(48), 18936–18941. https://doi.org/10.1073/pnas.0803943105
  • Hedlund, M., Tangvoranuntakul, P., Takematsu, H., Long, J. M., Housley, G. D., Kozutsumi, Y., Suzuki, A., Wynshaw-Boris, A., Ryan, A. F., Gallo, R. L., Varki N., & Varki A. (2007). N-Glycolylneuraminic acid deficiency in mice: Implications for human biology and evolution. Molecular and Cellular Biology, 27(12), 4340–4346. https://doi.org/10.1128/MCB.00379-07
  • Huang, Y.-P., Liu, K., Wang, Y.-X., Yang, Y., Xiong, L., Zhang, Z.-J., & Wen, Y. (2021). Application and research progress of organoids in cholangiocarcinoma and gallbladder carcinoma. American Journal of Cancer Research, 11, 31–42.
  • Jahan M, Thomson PC, Wynn PC, Wang B. 2021. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chemistry 343: 128439. https://doi.org/10.1016/j.foodchem.2020.128439.
  • Kirstein, M. M., Lange, A., Prenzler, A., Manns, M. P., Kubicka, S., & Vogel, A. (2014). Targeted therapies in metastatic colorectal cancer: A systematic review and assessment of currently available data. The Oncologist, 19(11), 1156–1168. https://doi.org/10.1634/theoncologist.2014-0032
  • Kraus, S., & Arber, N. (2009). Inflammation and colorectal cancer. Current Opinion in Pharmacology, 9(4), 405–410. https://doi.org/10.1016/j.coph.2009.06.006
  • Kwon, D. N., Park, W. J., Choi, Y. J., Gurunathan, S., & Kim, J. H. (2015). Oxidative stress and ROS metabolism via down-regulation of sirtuin 3 expression in cmah-null mice affect hearing loss. Aging, 7(8), 579–594. https://doi.org/10.18632/aging.100800
  • Labianca, R., Beretta, G. D., Kildani, B., Milesi, L., Merlin, F., Mosconi, S., Pessi, M. A., Prochilo, T., Quadri, A., & Gatta, G. (2010a). Colon cancer. Critical Reviews in Oncology/Hematology, 74(2), 106–133. https://doi.org/10.1016/j.critrevonc.2010.01.010
  • Labianca, R., Nordlinger, B., Beretta, G. D., Brouquet, A., & Cervantes, A. (2010b). Clinical practice guidelines primary colon cancer: ESMO clinical practice guidelines for diagnosis, adjuvant treatment and follow-up clinical practice guidelines. Annals of Oncology, 21, 70–77. https://doi.org/10.1093/annonc/mdq168
  • Landskron, G., De La Fuente, M., Thuwajit, P., Thuwajit, C., & Hermoso, M. A. (2014). Chronic inflammation and cytokines in the tumor microenvironment. Journal of Immunology Research, 2014. https://doi.org/10.1155/2014/149185
  • Lang, M., Borgmann, M., Oberhuber, G., Evstatiev, R., Jimenez, K., Dammann, K. W., Jambrich, M., Khare, V., Campregher, C., Ristl, R., & Gasche, C. (2013). Thymoquinone attenuates tumor growth in ApcMin mice by interference with Wntsignaling. Molecular Cancer, 12(1), 41. https://doi.org/10.1186/1476-4598-12-41
  • Ma, F., Deng, L., Secrest, P., Shi, L., Zhao, J., & Gagneux, P. (2016). A mouse model for dietary xenosialitis: Antibodies to xenoglycan can reduce fertility. Journal of Biological Chemistry, 291(35), 18222–18231. https://doi.org/10.1074/jbc.M116.739169
  • Malka, D., Rotolo, F., & Boige, V. (2017). First-line treatment in metastatic colorectal cancer: Important or crucial? European Journal of Cancer, 84, 363–366. https://doi.org/10.1016/j.ejca.2017.09.001
  • Naito, Y., Takematsu, H., Koyama, S., Miyake, S., Yamamoto, H., Fujinawa, R., Sugai, M., Okuno, Y., Tsujimoto, G., & Yamaji, T. (2007). Germinal center marker GL7 probes activation-dependent repression ofN-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Molecular and Cellular Biology, 27(8), 3008–3022. https://doi.org/10.1128/MCB.02047-06
  • Naito-Matsui, Y., Takada, S., Kano, Y., Iyoda, T., Sugai, M., Shimizu, A., Inaba, K., Nitschke, L., Tsubata, T., Oka, S., Kozutsumi, Y., & Takematsu, H. (2014). Functional evaluation of activation-dependent alterations in the sialoglycan composition of T cells. Journal of Biological Chemistry, 289(3), 1564–1579. https://doi.org/10.1074/jbc.M113.523753
  • Oh, B. Y., Hong, H. K., Lee, W. Y., & Cho, Y. B. (2017). Animal models of colorectal cancer with liver metastasis. Cancer Letters, 387, 114–120. https://doi.org/10.1016/j.canlet.2016.01.048
  • Padler-Karavani, V., Yu, H., Cao, H., Chokhawala, H., Karp, F., Varki, N., Chen, X., & Varki, A. (2008). Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: Potential implications for disease. Glycobiology, 18(10), 818–830. https://doi.org/10.1093/glycob/cwn072
  • Pan, A., Sun, Q., Bernstein, A. M., Schulze, M. B., Manson, J. A. E., Stampfer, M. J., Willett, W. C., & Hu, F. B. (2012). Red meat consumption and mortality: Results from 2 prospective cohort studies. Archives of Internal Medicine, 172(7), 555–563. https://doi.org/10.1001/archinternmed.2011.2287
  • Pan, A., Sun, Q., Bernstein, A. M., Schulze, M. B., Manson, J. E., Willett, W. C., & Hu, F. B. (2011). Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. The American Journal of Clinical Nutrition, 94(4), 1088–1096. https://doi.org/10.3945/ajcn.111.018978
  • Pan, P., Skaer C. W., Wang H.-T., Oshima, K., Huang, Y.-W., Yu, J., Zhang, J., Yearsley, M. M., Agle, K. A., Drobyski, W. R., Chen, X., & Wang, L.-S. (2017). Loss of free fatty acid receptor 2 enhances colonic adenoma development and reduces the chemopreventive effects of black raspberries in ApcMin/+ mice. Carcinogenesis, 38(1), 86–93. https://doi.org/10.1093/carcin/bgw122
  • Pan, P., Skaer, C. W., Wang, H.-T., Stirdivant, S. M., Young, M. R., Oshima, K., Stoner, G. D., Lechner, J. F., Huang, Y.-W., & Wang, L.-S. (2015). Black raspberries suppress colonic adenoma development in Apc Min/+ mice: Relation to metabolite profiles. Carcinogenesis, 36(10), 1245–1253. https://doi.org/10.1093/carcin/bgv117
  • Puppa, M. J., White, J. P., Sato, S., Cairns, M., Baynes, J. W., & Carson, J. A. (2011). Gut barrier dysfunction in the ApcMin/+ mouse model of colon cancer cachexia. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1812(12), 1601–1606. https://doi.org/10.1016/j.bbadis.2011.08.010
  • Qiu, S. L., Xiao, Z. C., Piao, C. M., Xian, Y. L., Jia, L. X., Qi, Y. F., Han, J. H., Zhang, Y., & Du, J. (2014). AMP-activated protein kinase α2 protects against liver injury from metastasized tumors via reduced glucose deprivation-induced oxidative stress. Journal of Biological Chemistry, 289(13), 9449–9459. https://doi.org/10.1074/jbc.M113.543447
  • Rainis, T., Maor, I., Lanir, A., Shnizer, S., & Lavy, A. (2007). Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Digestive Diseases and Sciences, 52(2), 526–530. https://doi.org/10.1007/s10620-006-9177-2
  • Rees, M., Tekkis, P. P., Welsh, F. K. S., O’Rourke, T., & John, T. G. (2008). Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer. Annals of Surgery, 247(1), 125–135. https://doi.org/10.1097/SLA.0b013e31815aa2c2
  • Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616
  • Samraj, A. N., Läubli, H., Varki, N., & Varki, A. (2014). Involvement of a non-human sialic acid in human cancer. Frontiers in Oncology, 4(2), 1–14.
  • Samraj, A. N., Pearce, O. M. T., Läubli, H., Crittenden, A. N., Bergfeld, A. K., Banda, K., Gregg, C. J., Bingman, A. E., Secrest, P., Diaz, S. L., Varki, N. M., & Varki, A. (2015). A red meat-derived glycan promotes inflammation and cancer progression. Proceedings of the National Academy of Sciences, 112(2), 542–547. https://doi.org/10.1073/pnas.1417508112
  • Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science, 331(6024), 1565–1570. https://doi.org/10.1126/science.1203486
  • Sheng, Y., Ng, C. P., Lourie, R., Shah, E. T., He, Y., Wong, K. Y., Seim, I., Oancea, I., Morais, C., Jeffery, P. L., Hooper, J., Gobe, G. C., & McGuckin, M. A. (2017a). MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 140(10), 2351–2363. https://doi.org/10.1002/ijc.30651
  • Sheng, Y., Wong, K. Y., Seim, I., Wang, R., He, Y., Wu, A., Patrick, M., Lourie, R., Schreiber, V., Giri, R., Ng, C. P., Popat, A., Hooper, J., Kijanka, G., Florin, T. H., Begun, J., Radford, K. J., Hasnain, S., & McGuckin, M. A. (2019). MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity. Oncogene, 38(48), 7294–7310. https://doi.org/10.1038/s41388-019-0951-y
  • Sheng YH, He Y, Hasnain SZ, Wang R, Tong H, Clarke DT, Lourie R, Oancea I, Wong KY, Lumley JW, Florin TH, Sutton P, Hooper JD, McMillan NA, McGuckin MA. 2017b. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target. Oncogene 36(5): 700–713. https://doi.org/10.1038/onc.2016.241
  • Shi, C., & Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 11(11), 762–774. https://doi.org/10.1038/nri3070
  • Shimabukuro-Vornhagen, A., Schlößer, H. A., Gryschok, L., Malcher, J., Wennhold, K., Garcia-Marquez, M., Herbold, T., Neuhaus, L. S., Becker, H. J., Fiedler, A., Scherwitz, P., Koslowsky, T., Hake, R., Stippel, D. L., Hölscher, A. H., Eidt, S., Hallek, M., Theurich, S., & von Bergwelt-Baildon, M. S. (2014). Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget, 5(13), 4651–4664. https://doi.org/10.18632/oncotarget.1701
  • Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., Cercek, A., Smith, R. A., & Jemal, A. (2020). Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(3), 145–164. https://doi.org/10.3322/caac.21601
  • Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A., & Muchmore, E. (2003). Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proceedings of the National Academy of Sciences, 100(21), 12045–12050. https://doi.org/10.1073/pnas.2131556100
  • Tournigand, C., André, T., Achille, E., Lledo, G., Flesh, M., Mery-Mignard, D., Quinaux, E., Couteau, C., Buyse, M., Ganem, G., Landi, B., Colin, P., Louvet, C., & de Gramont, A. (2004). FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: A randomized GERCOR study. Journal of Clinical Oncology, 22(2), 229–237. https://doi.org/10.1200/JCO.2004.05.113
  • Transition, E. (2019). Selected aspects of chemoresistance mechanisms in colorectal carcinoma — A focus on epithelial-to-mesenchymal transition, autophagy, and apoptosis. Cells, 8(3), 234.
  • Van Der Stok, E. P., Spaander, M. C. W., Grünhagen, D. J., Verhoef, C., & Kuipers, E. J. (2017). Surveillance after curative treatment for colorectal cancer. Nature Reviews Clinical Oncology, 14(5), 297–315. https://doi.org/10.1038/nrclinonc.2016.199
  • Varki, A. (2010). Uniquely human evolution of sialic acid genetics and biology. Proceedings of the National Academy of Sciences, 107(supplement_2), 8939–8946. https://doi.org/10.1073/pnas.0914634107
  • Wang, S., Liu, Z., Wang, L., & Zhang, X. (2009). NF-κB Signaling pathway, inflammation and colorectal cancer. Cellular & Molecular Immunology, 6(5), 327–334. https://doi.org/10.1038/cmi.2009.43
  • Wang, X., Yang, L., Huang, F., Zhang, Q., Liu, S., Ma, L., & You, Z. (2017). Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunology Letters, 184, 7–14. https://doi.org/10.1016/j.imlet.2017.02.006
  • Yang, Y., Gharaibeh, R. Z., Newsome, R. C., & Jobin, C. (2020). Amending microbiota by targeting intestinal inflammation with TNF blockade attenuates development of colorectal cancer. Nature Cancer, 1(7), 723–734. https://doi.org/10.1038/s43018-020-0078-7
  • Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). Clusterprofiler: An R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287. doi:10.1089/omi.2011.0118