427
Views
1
CrossRef citations to date
0
Altmetric
Articles

A comparative study on aquatic toxicity of chemically-synthesized and green synthesis silver nanoparticles on daphnia magna

, , ORCID Icon & ORCID Icon
Pages 2149-2159 | Received 01 Apr 2021, Accepted 22 Jun 2021, Published online: 30 Jun 2021

References

  • Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN. 2010. Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environmental Toxicology and Chemistry. 29(12):2742–2750. doi:10.1002/etc.329.
  • Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ. 2012. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology. 10(1):14. doi:10.1186/1477-3155-10-14.
  • Blewett TA, Delompre PLM, He YH, Folkerts EJ, Flynn SL, Alessi DS, Goss GG. 2017 Mar 7. Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea daphnia magna. Environ Sci Technol. 51(5):3032–3039. doi10.1021/acs.est.6b05179.
  • Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen O-P KA, Kahru A. 2013. Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environmental Science and Pollution Research. 20(5):3456–3463. doi:10.1007/s11356-012-1290-5.
  • Bystrzejewska-Piotrowska G, Golimowski J, Urban PL. 2009. Nanoparticles: their potential toxicity, waste and environmental management. Waste Management. 29(9):2587–2595. doi:10.1016/j.wasman.2009.04.001.
  • Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB. 2009. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol. 94(4):320–327. doi:10.1016/j.aquatox.2009.07.019.
  • Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF. 2011. Effects of silver and cerium dioxide micro-and nano-sized particles on Daphnia magna. Journal of Environmental Monitoring. 13(5):1227–1235. doi:10.1039/c1em10060b.
  • Geranio L, Heuberger M, Nowack B. 2009. The behavior of silver nanotextiles during washing. Environmental Science & Technology. 43(21):8113–8118. doi:10.1021/es9018332.
  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS. 2008. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry: An International Journal. 27(9):1972–1978. doi:10.1897/08-002.1.
  • Handy RD, Von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 17(4):287–314. doi:10.1007/s10646-008-0199-8.
  • Hannas BR, Wang YH, Thomson S, Kwon G, Li H, LeBlanc GA. 2011. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna). Aquatic Toxicology. 101(2):351–357. doi:10.1016/j.aquatox.2010.11.006.
  • Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A. 2008. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology. 17(5):438–447. doi:10.1007/s10646-008-0210-4.
  • Hernandez J, Mota L, Baldwin W. 2009. Activation of CAR and PXR by dietary, environmental and occupational chemicals alters drug metabolism, intermediary metabolism, and cell proliferation. Current Pharmacogenomics and Personalized Medicine (Formerly Current Pharmacogenomics). 7(2):81–105. doi:10.2174/187569209788654005.
  • Icoglu Aksakal F. 2019. Acute and chronic effects of thifluzamide on Daphnia magna. Turkish Journal of Zoology. 43(6):554–559. doi:10.3906/zoo-1909-8.
  • Jones PD, De Coen W, Tremblay L, Giesy JP. 2000. Vitellogenin as a biomarker for environmental estrogens. Water Science and Technology. 42(7–8):1–14. doi:10.2166/wst.2000.0546.
  • Kennedy AJ, Hull MS, Bednar AJ, Goss JD, Gunter JC, Bouldin JL, Vikesland PJ, Steevens JA. 2010. Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environmental Science & Technology. 44(24):9571–9577. doi:10.1021/es1025382.
  • Kretschmer XC, Baldwin WS. 2005. CAR and PXR: xenosensors of endocrine disrupters? Chemico-biological Interactions. 155(3):111–128. doi:10.1016/j.cbi.2005.06.003.
  • Krzyżewska I, Kyzioł-Komosińska J, Rosik-Dulewska C, Czupioł J, Antoszczyszyn-Szpicka P. 2016. Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements. Archives of Environmental Protection. 42(1):87–101. doi:10.1515/aep-2016-0011.
  • Künniger T, Gerecke AC, Ulrich A, Huch A, Vonbank R, Heeb M, Wichser A, Haag R, Kunz P, Faller M. 2014. Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environmental Pollution. 184:464–471. doi:10.1016/j.envpol.2013.09.030.
  • Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW. 2010. Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Analytical and Bioanalytical Chemistry. 398:689–700.
  • Liu Y, Ding R, Pan BB, Wang L, Liu SJ, Nie XP. 2019. Simvastatin affect the expression of detoxification-related genes and enzymes in Daphnia magna and alter its life history parameters. Ecotox Environ Safe. Oct. 30:182.
  • Liu Y, Wang L, Pan B, Wang C, Bao S, Nie X. 2017a. Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna. Aquatic Toxicology. 183:104–113.
  • Liu Y, Wang L, Pan BB, Wang C, Bao S, Nie XP. 2017b. Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna. Aquat Toxicol. Feb; 183:104–113. doi:10.1016/j.aquatox.2016.12.020.
  • Lorenz C, Windler L, von Goetz N, Lehmann R, Schuppler M, Hungerbühler K, Heuberger M, Nowack B. 2012. Characterization of silver release from commercially available functional (nano)textiles. Chemosphere. 89(7):817–824. doi:10.1016/j.chemosphere.2012.04.063.
  • Matozzo V, Gagné F, Marin MG, Ricciardi F, Blaise C. 2008. Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review. Environment International. 89(4):531–545. doi:10.1016/j.envint.2007.09.008.
  • McTeer J, Dean AP, White KN, Pittman JK. 2014. Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability. Nanotoxicology. 8(3):305–316. doi:10.3109/17435390.2013.778346.
  • Moore M. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International. 32(8):967–976. doi:10.1016/j.envint.2006.06.014.
  • Nasser F, Davis A, Valsami-Jones E, Lynch I. 2016. Shape and charge of gold nanomaterials influence survivorship, oxidative stress and moulting of Daphnia magna. Nanomaterials. 6(12):222. doi:10.3390/nano6120222.
  • Park SY, Chung J, Colman BP, Matson CW, Kim Y, Lee BC, Kim PJ, Choi K, Choi J. 2015. Ecotoxicity of bare and coated silver nanoparticles in the aquatic midge, Chironomus riparius. Environ Toxicol Chem. 34(9):2023–2032. doi:10.1002/etc.3019.
  • Pasricha A, Jangra SL, Singh N, Dilbaghi N, Sood K, Arora K, Pasricha R. 2012. Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment. Journal of Environmental Sciences. 24(5):852–859. doi:10.1016/S1001-0742(11)60849-8.
  • Qatanani M, Moore D. 2005. CAR, the continuously advancing receptor, in drug metabolism and disease. Current Drug Metabolism. 6(4):329–339. doi:10.2174/1389200054633899.
  • Rani PU, Rajasekharreddy P. 2011. Green synthesis of silver-protein (core–shell) nanoparticles using Piper betle L. Leaf Extract and Its Ecotoxicological Studies on Daphnia Magna. Colloids and Surfaces A: Physicochemical and Engineering Aspects 389:188–194.
  • Rewitz KF, Gilbert LI. 2008. Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications. BMC Evolutionary Biology. 8(1):60. doi:10.1186/1471-2148-8-60.
  • Sakka Y, Skjolding LM, Mackevica A, Filser J, Baun A. 2016. Behavior and chronic toxicity of two differently stabilized silver nanoparticles to Daphnia magna. Aquat Toxicol. 177:526–535. doi:10.1016/j.aquatox.2016.06.025.
  • Sohn EK, Johari SA, Kim TG, Kim JK, Kim E, Lee JH, Chung YS, Yu IJ. 2015. Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Hindawi, BioMed Res Int. 2015;2015:893049.doi: 10.1155/2015/893049.Epub 2015 Jun 1.
  • Völker C, Boedicker C, Daubenthaler J, Oetken M, Oehlmann J, Shankar SS. 2013. Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments. PloS One. 8(10):e75026. doi:10.1371/journal.pone.0075026.
  • Yilmaz M. 2019. Silver-nanoparticle-decorated gold nanorod arrays via bioinspired polydopamine coating as Surface-Enhanced Raman Spectroscopy (SERS) Platforms. Coatings. 9(3):198. doi:10.3390/coatings9030198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.