57
Views
0
CrossRef citations to date
0
Altmetric
Report

Rupture strength prediction of martensitic power plant steels

, , &
Pages 31-38 | Received 09 Mar 2023, Accepted 15 Aug 2023, Published online: 03 Oct 2023

References

  • Guo Z. Modelling simultaneous precipitation in martensitic type power plant steels. Sente Software Ltd; 2011.
  • Guo Z. Tempered hardness of martensitic steels. Sente Software Ltd; 2012.
  • Porter DA, Easterling KE. Phase transformations in metals and alloys. London: Chapman & Hall; 1992pp. 287–290. doi: 10.1007/978-1-4899-3051-4
  • Martin JW, Doherty RD, Cantor B. Stability of microstructure in metallic systems. Cambridge: Cambridge University Press; 1997.
  • Li X, Miodownik AP, Saunders N. Modelling of materials properties in duplex stainless steels. Mater Sci Technol. 2002;18(8):861–868. doi: 10.1179/026708302225004694
  • Guo Z, Miodownik AP. Modelling deformation-induced precipitation kinetics in microalloyed steels during hot rolling. Mater Sci Forum. 2012;706-709:2728–2733. 706-709. doi: 10.4028/www.scientific.net/MSF.706-709.2728.
  • Saunders N, Miodownik AP. CALPHAD – calculation of phase diagrams. In: editor, Cahn RW. Pergamon materials series. Vol. 1. Oxford: Elsevier Science; 1998.
  • Robson JD, Bhadeshia HKDH. Modelling precipitation sequences in power plant steels part 1 – kinetic theory. Mater Sci Technol. 1997;13(8):631–639. doi: 10.1179/mst.1997.13.8.631
  • Robson JD, Bhadeshia HKDH. Modelling precipitation sequences in powerplant steels part 2 – application of kinetic theory. Mater Sci Technol. 1997;13(8):640–644. doi: 10.1179/mst.1997.13.8.640
  • Li X, Miodownik AP, Saunders N. Simultaneous calculation of mechanical properties and phase equilibria. JPE. 2001;22(3):247–253. doi: 10.1361/105497101770338725
  • Gladman T. Precipitation hardening in metals. Mater Sci Technol. 1999;15(1):30–36. doi: 10.1179/026708399773002782
  • Martin JW. Precipitation hardening - theory and applications. 2nd ed. Butterworth-Heinemann; 1998.
  • Guo Z, Sha W. Quantification of precipitation hardening and evolution of precipitates, Mater. Trans. 2002;43(6):1273–1282. doi: 10.2320/matertrans.43.1273
  • Miodownik AP, Li X, Saunders N. Modelling of creep in nickel based superalloys. Proceeding of 6th International Charles Parsons Turbine Conference in Dublin; 2003. p. 779–788.
  • Saunders N, Guo Z, Li X, et al. Computer modelling of materials properties and behaviour; 2004 10th International Symposium on Superalloys, Sep 19-23; Champion, Pennsylvania, 849–858.
  • Evans WJ, Harrison GF. The development of a universal equation for secondary creep rates in pure metals and engineering alloys. Metal Sci. 1976;10(9):307–313. doi: 10.1179/msc.1976.10.9.307
  • Guo Z, Saunders N, Miodownik AP, et al. Quantification of high temperature strength of nickelbased superalloys. MSF. 2007;546-549:1319–1326. 546-549. doi: 10.4028/www.scientific.net/MSF.546-549.1319.
  • Lagneborg R, Bergman B. The stress/creep rate behaviour of precipitation-hardened alloys. Metal Sci. 1976;10(1):20–28. doi: 10.1179/030634576790431462
  • Hu J. Remnant creep rupture life prediction of precipitation-hardened polycrystalline nickel based superalloys. Sente Software Ltd; 2019.
  • Zhu SM, Tjong SC, Lai JKL. Creep behavior of a beta’ (NiAl) precipitation strengthened ferritic fe-CrNi-al alloy. Acta Materialia. 1998;46(9):2969–2976. doi: 10.1016/S1359-6454(98)00022-6
  • Monkman FC, Grant NJ. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests, proc. Amer Soc Test Mater. 1956;56:593–620.
  • Guo Z, Unpublished research, Sente Software Ltd, 2021.
  • Data of Grades 91 and 92 were from “datasheets-update2019-1”, Whereas Data Of E911 Were From “Eccc_data_sheets_2017_i2r002-1”. Oct. 2021. Available from https://www.eccc-creep.com/eccc-data-sheets/
  • Abe F. Progress in creep-resistant steels for high efficiency coal-fired power plants. J Pressure Vessel Technol. 2016;138(4):_040804_0–_040804_21. doi: 10.1115/1.4032372
  • Dong Z, Chen L, Xiang ZD. Design of a new 11Cr martensitic steel and evaluation of its long-term creep rupture strengths. J Mater Res Technol. 2022;20:3450–3455. doi: 10.1016/j.jmrt.2022.08.116
  • Jiang CC, Dong Z, Song XL, et al. Long-term creep rupture strength prediction for a new grade of 9Cr martensitic creep resistant steel (G115) – an application of a new tensile creep rupture model. J Mater Res Technol. 2020;9(3):5542–5548. doi: 10.1016/j.jmrt.2020.03.079
  • Ennis PJ, Czyrska-Filemonowicz A. Recent advances in creep-resistant steels for power plant applications. Sadhana. 2003;28(3–4):709–730. doi: 10.1007/BF02706455
  • Fedoseeva A, Dudova N, Kaibyshev R. Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel. Mater Sci Eng A. 2016;654:1–12. doi: 10.1016/j.msea.2015.12.027
  • Guo Z. Rupture strength of martensitic/ferritic power plant steels. Sente Software Ltd; 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.