72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of oxide scale and microstructural changes during cyclic hot corrosion on high-temperature tensile properties of Rene-80 superalloy

ORCID Icon, ORCID Icon & ORCID Icon
Pages 357-371 | Received 11 Apr 2023, Accepted 25 Oct 2023, Published online: 01 Nov 2023

References

  • Rahmani K, Nategh S. Low cycle fatigue mechanism of rené 80 at high temperature–high strain. Mater Sci Eng A. 2008;494(1–2):385–390. doi: 10.1016/j.msea.2008.04.067
  • Sidhu RK, Ojo OA, Chaturvedi MC. Sub-solidus melting of directionally solidified Rene 80 superalloy during solution heat treatment. J Mater Sci. 2008;43(10):3612–3617. doi: 10.1007/s10853-008-2575-4
  • Hadjiapostolidou D, Shollock BA Long term coarsening in Rene-80 Ni-base superalloy. Superalloy 2008 TMS Conference 733–739 Pennsylvania.
  • Gao S, Hou JS, Dong KX, et al. Influences of cooling rate after solution treatment on microstructural evolution and mechanical properties of superalloy Rene 80. Acta Metall Sin (Engl Lett). 2017;30(3):261–271. doi: 10.1007/s40195-016-0500-4
  • Yang C, Xu Y, Nie H, et al. Effects of heat treatments on the microstructure and mechanical properties of Rene 80. Mater Des. 2013;43:66–73. doi: 10.1016/j.matdes.2012.06.039
  • Rahmani K, Nategh S. On the heat treatment of Rene-80 nickel-base superalloy. J Mater Process Tech. 2006;176(1–3):240–250. doi: 10.1016/j.jmatprotec.2006.03.165
  • Barjesteh MM, Abbasi SM, ZangenehMadar K, et al. The effect of heat treatment on characteristics of the gamma prime phase and hardness of the nickel-based superalloy Rene 80. Mater Chem Phys. 2019;227:46–55. doi: 10.1016/j.matchemphys.2019.01.038
  • Yu H, Wang Z, Zhang B, et al. Re-precipitation mechanisms of the γ′ phase with sphere, near-sphere, cubic, octets and finally-dendrite in as-cast Ni-based superalloys. J Alloys Compd. 2021;876:160104. doi: 10.1016/j.jallcom.2021.160104
  • Li M, Coakley J, Isheim D, et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy. J Alloys Compd. 2018;732:765–776. doi: 10.1016/j.jallcom.2017.10.263
  • Pytel M, Góral M, Nowotnik A, et al. Heat treatment and CVD aluminizing of Ni-base Rene 80 superalloy. J Achiev Mater Manuf Eng. 2012;51:30–38.
  • Masoumi F, Jahazi M, Shahriari D, et al. Coarsening and dissolution of γ′ precipitates during solution treatment of AD730 Ni-based superalloy: mechanisms and kinetics models. J Alloys Compd. 2016;658:981–995. doi: 10.1016/j.jallcom.2015.11.002
  • Lim LC, Liu N, Yi JZ, et al. Cyclic overaging pre-weld heat treatment of Rene 80: effect of solution treatment and end aging temperatures. Mater Sci Technol. 2002;18(4):420–428. doi: 10.1179/026708302225002047
  • Qiu YY. The effect of the lattice strains on the directional coarsening of γ′ precipitates in Ni-based alloys. J Alloys Compd. 1996;232(1–2):254–263. doi: 10.1016/0925-8388(95)01914-6
  • Wu Y, Li C, Xia X, et al. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ′-strengthened superalloys. J Mater Sci Technol. 2021;67:95–104. doi: 10.1016/j.jmst.2020.06.025
  • Zhang J, Huang T, Cao K, et al. A correlative multidimensional study of γ′ precipitates with Ta addition in re-containing Ni-based single crystal superalloys. J Mater Sci Technol. 2021;75:68–77. doi: 10.1016/j.jmst.2020.10.025
  • Garip Y, Ozdemir O. Comparative study of the oxidation and hot corrosion behaviors of TiAl-Cr intermetallic alloy produced by electric current activated sintering. J Alloys Compd. 2019;780:364–377. doi: 10.1016/j.jallcom.2018.11.324
  • Yu X, Song P, He X, et al. Influence of the combined-effect of NaCl and Na2SO4 on the hot corrosion behavior of aluminide coat ing on Ni-based alloys. J Alloys Compd. 2019;790:228–239. doi: 10.1016/j.jallcom.2019.03.165
  • Garip Y, Garip Z, Ozdemir O. Prediction modeling of type-I hot corrosion performance of Ti-al-Mo-X (X=cr, mn) alloys in (Na, K)2SO4 molten salt mixture environment at 900 °C. J Alloys Compd. 2020;843:156010. doi: 10.1016/j.jallcom.2020.156010
  • Cockings HL, Cockings BJ, Harrison W, et al. The effect of near-surface plastic deformation on the hot corrosion and high temperature corrosion-fatigue response of a nickel-based superalloy. J Alloys Compd. 2020;832:154889. doi: 10.1016/j.jallcom.2020.154889
  • Hu S, Finkle H, Liu X. A review on molten sulfate salts induced hot corrosion. J Mater Sci Technol. 2021;90:243–254. doi: 10.1016/j.jmst.2021.03.013
  • Nabavi B, Goodarzi M, Khan AK. Metallurgical effects of nitrogen on the microstructure and hot corrosion behavior of alloy 718 weldment. Mater Charact. 2019;157:109916. doi: 10.1016/j.matchar.2019.109916
  • Garip Y. An investigation on the corrosion performance of Fe2CoCrNi0.5 based high entropy alloys. Corros Sci. 2022;206:110497. doi: 10.1016/j.corsci.2022.110497
  • Rabieifar A, Afshar MR, Najafi H, et al. The evaluation of oxide scale formation during hot corrosion of Rene-80 superalloy under thermal shock at different dwell times. Corros Eng Sci Technol. 2022;57(1):55–65. doi: 10.1080/1478422X.2021.1986248
  • Athreya CN, Deepak K, Kim DI, et al. Role of grain boundary engineered microstructure on high temperature steam oxidation behaviour of Ni based superalloy alloy 617. J Alloys Compd. 2019;778:224–233. doi: 10.1016/j.jallcom.2018.11.137
  • Rabieifar A, Afshar MR, Najafi H, et al. Investigation of microstructural changes of pt-al-7% YSZ coating during high-temperature hot corrosion and its effect on tensile properties of coated Rene-80 superalloy at 950 °C. Surf Coat Technol. 2022;439:128461. doi: 10.1016/j.surfcoat.2022.128461
  • Muthu SM, Arivarasu M. Investigations of hot corrosion resistance of HVOF coated Fe based super alloy a-286 in simulated gas turbine environment. Eng Fail Anal. 2020;107:104224. doi: 10.1016/j.engfailanal.2019.104224
  • Jalowicka A, Nowak W, Naumenko D, et al. Effect of nickel base superalloy composition on oxidation resistance in SO2 containing, high pO2 environments. Corros Mater. 2014;65(2):178–187. doi: 10.1002/maco.201307299
  • Tan ZH, Wang XG, Song W, et al. Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature. Vacuum. 2020;175:109284. doi: 10.1016/j.vacuum.2020.109284
  • Wu Y, Bai Z, Zheng L, et al. Hot corrosion behavior of NdYbZr2O7 exposed to V2O5 and Na2SO4 + V2O5 molten salts. Ceram Int. 2020;46(7):8543–8552. doi: 10.1016/j.ceramint.2019.12.083
  • Wang X, Xin L, Wang F, et al. Influence of sputtered nanocrystalline coating on oxidation and hot corrosion of a nickel-based superalloy M951. J Mater Sci Technol. 2014;30(9):867–877. doi: 10.1016/j.jmst.2014.01.001
  • Pillay B A study of Nickel Molybdenum oxide catalysts for the oxidative dehyrogenation of n-Hexane, [ Ph.D Thesis], School of Chemistry. University of Kwazulunatal Durban, South Africa, 2009.
  • Cao J, Zhang J, Hua Y, et al. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing. Mater Charact. 2017;125:67–75. doi: 10.1016/j.matchar.2017.01.021
  • Peng X, Jiang S, Gong J, et al. Preparation and hot corrosion behavior of a NiCrAlY + AlNiY composite coating. J Mater Sci Technol. 2016;32(6):587–592. doi: 10.1016/j.jmst.2016.04.017
  • Barjesteh MM, Abbasi SM, ZangenehMadar K, et al. Correlation between platinum-aluminide coating features and tensile behavior of nickel-based superalloy Rene 80. Rare Met;2019. doi: 10.1007/s12598-019-01293-4
  • Chai Y, Yang X, Li Y, et al. Stress development in thermal barrier coatings with morphology-controlled thermally grown oxide. Ceram Int. 2019;45(16):20435–20445. doi: 10.1016/j.ceramint.2019.07.020
  • Hui L, Yuping L, Caili Z, et al. Effects of aluminum diffusion on the adhesive behavior of the Ni(111)/Cr2O3(0001) interface: first principle study. Comput Mater Sci. 2013;78:116–122. doi: 10.1016/j.commatsci.2013.05.037
  • Qiao Y, Kong J, Guo X. Hot corrosion phenomena of nb-Ti-si based alloy and its silicide coating induced by different corrosive environments at 900 °C. Ceram Int. 2018;44(7):7978–7990. doi: 10.1016/j.ceramint.2018.01.238
  • Sun B, Zhang T, Shi J, et al. Microstructural evolution during exposure in air and oxidation behavior of a nickel based superalloy. Vacuum. 2021;183:109801. doi: 10.1016/j.vacuum.2020.109801
  • Ci S, Liang J, Li J, et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming. J Mater Sci Technol. 2020;45:23–34. doi: 10.1016/j.jmst.2020.01.003
  • Rahmani K, Nategh S. Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80. Surf Coat Technol. 2008;202(8):1385–1391. doi: 10.1016/j.surfcoat.2007.06.041
  • Barjesteh MM, Abbasi SM, ZangenehMadar K, et al. The effect of platinum-aluminide coating features on high-temperature fatigue life of nickel-based superalloy Rene®80. J Min Metall B. 2019;55(2):235–251. doi: 10.2298/JMMB181214029B
  • Rahmani K, Nategh S. Mechanical properties of uncoated and aluminide-coated rené 80. Metall Mater Trans A. 2010;41A(1):125–137. doi: 10.1007/s11661-009-0046-4
  • Hou K, Wang M, Ou M, et al. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C. J Mater Sci Technol. 2021;68:40–52. doi: 10.1016/j.jmst.2020.08.001
  • Gong L, Chen B, Zhang L, et al. Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G. J Mater Sci Technol. 2018;34(5):811–820. doi: 10.1016/j.jmst.2017.03.023
  • Khafri MA, Farahani S. Creep life prediction of thermally exposed Rene 80 superalloy. J Mater Eng Perform. 2010;19(7):1065–1070. doi: 10.1007/s11665-009-9584-6
  • Acharya R, Bansal R, Gambone JJ, et al. Additive manufacturing and characterization of rené 80 superalloy processed through scanning laser epitaxy for turbine engine hot-Section component repair. Adv Eng Mater. 2015;17(7):942–950. doi: 10.1002/adem.201400589
  • Standard test methods for tension testing of metallic Materials, officials standard AASHTO no. T68, an American National standard, ASTM. U.S. Department of Defense, West Conshohocken: American Association State Highway and Transportation; 2013. pp. 1–30 doi:10.1520/E0008_E0008M-13A.
  • Xu Y, Yang C, Xiao X, et al. Evolution of microstructure and mechanical properties of Ti modified superalloy Nimonic 80A. Mater Sci Eng A. 2011;530:315–326. doi: 10.1016/j.msea.2011.09.091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.