460
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Crystal plasticity model for creep and relaxation deformation of OFP copper

ORCID Icon, , , , , & show all
Pages 51-60 | Received 19 Mar 2023, Accepted 15 Aug 2023, Published online: 06 Nov 2023

References

  • Raiko H, Canister Design 2012, Posiva Oy, Finland, 2013. Report 2012-13.
  • Forsström A, Bossuyt S, Yagodzinskyy Y, et al. Strain localization in copper canister FSW welds for spent nuclear fuel disposal. J Nucl Mater. 2019;523:347–359. doi: 10.1016/j.jnucmat.2019.06.024
  • Sui F, Sandström R, Wu R. Creep tests on notched specimens of copper. J Nucl Mater. 2018;509:62–72. doi: 10.1016/j.jnucmat.2018.06.018
  • Jin LZ, Sandstrom R. Creep of copper canisters in power-law breakdown. Comput Mater Sci. 2008;43(3):403–416. doi: https://doi.org/10.1016/j.commatsci.2007.12.017
  • Yagodzinskyy Y, Malitckii E, Saukkonen T, et al. Hydrogen-enhanced creep and cracking of oxygen-free phosphorus-doped copper. Scripta Materialia. 2012;67(12):931–934. doi: http://dx.doi.org/10.1016/j.scriptamat.2012.08.018
  • Pettersson K. A study of grain boundary sliding in copper with and without an addition of phosphorus. J Nucl Mater. 2010;405(2):131–137. doi: https://doi.org/10.1016/j.jnucmat.2010.07.044
  • Sandström R, Andersson HCM. The effect of phosphorus on creep in copper. J Nucl Mater. 2008;372(1):66–75. doi: 10.1016/j.jnucmat.2007.02.004
  • Sandström R, Lousada C. The role of binding energies for phosphorus and sulphur at grain boundaries in copper. J Nucl Mater. 2021;544:152–682. doi: 10.1016/j.jnucmat.2020.152682
  • Monnet G, Mai C. Prediction of irradiation hardening in austenitic stainless steels: analytical and crystal plasticity studies. J Nucl Mater. 2019;518:316–325. doi: 10.1016/j.jnucmat.2019.03.001
  • Lindroos M, Scherer J-M, Forest S, et al. Micromorphic crystal plasticity approach to damage regularization and size effects in martensitic steels. Inter J Plasticity. 2022;151:103–187. doi: https://doi.org/10.1016/j.ijplas.2021.103187
  • Aslan O, Cordero NM, Gaubert A, et al. Micromorphic approach to single crystal plasticity and damage. Int J Eng Sci. 2011;49(12):1311–1325. doi: https://doi.org/10.1016/j.ijengsci.2011.03.008
  • Sabnis PA, Forest S, Cormier J. Microdamage modelling of crack initiation and propagation in FCC single crystals under complex loading conditions. Comput Methods Appl Mech Eng. 2016;312:468–491. doi: 10.1016/j.cma.2016.04.018
  • Bronkhorst CA, Mayeur JR, Livescu V, et al. Structural representation of additively manufactured 316L austenitic stainless steel. Int J Plast. 2019;118:70–86. doi: 10.1016/j.ijplas.2019.01.012
  • Charles KC, Lieou C C, Bronkhorst CA. Thermodynamic theory of crystal plasticity: formulation and application to polycrystal fcc copper. J Phys Mech Solids. 2020;138:103905. doi: 10.1016/j.jmps.2020.103905
  • Scherer JM, Besson J, Forest S, et al. A strain gradient plasticity model of porous single crystal ductile fracture. J Mech Phys Solids. 2021;156:104606. doi: https://doi.org/10.1016/j.jmps.2021.104606
  • Lindroos M, Andersson T, Laukkanen J, et al. Crystal plasticity with micromorphic regularization in assessing scale dependent deformation of polycrystalline doped copper alloys. Crystals. 2021;11(8):994. doi: 10.3390/cryst11080994
  • Lindroos M, Cailletaud G, Laukkanen A. Crystal plasticity modeling and characterization of the deformation twinning and strain hardening in Hadfield steels. Mater Sci Eng A. 2018;720:145–159. doi: https://doi.org/10.1016/j.msea.2018.02.028
  • Laporte V, Mortensen A. Intermediate temperature embrittlement of copper alloys. International Materials Reviews. 2009;54(2):94–116. doi: 10.1179/174328009X392967
  • Riedel H. Fracture at high temperatures. Berlin, Germany: Springer-Verlag; 1987. pp. 67–129.
  • Hull D, Rimmer D. The growth of grain-boundary voids under stress. Philos Mag. 1959;4(42):673–687. doi: https://doi.org/10.1080/14786435908243264
  • Dzieciol K, Borbély A, Sket F, et al. Void growth in copper during high-temperature power-law creep. Acta Materialia. 2011;59(2):671–677. doi: https://doi.org/10.1016/j.actamat.2010.10.003
  • Pohja R, Auerkari P, Vilaça P. Modelling for creep cavitation damage and life of three metallic materials. Mater High Temp. 2022;39(1):86–96. doi: https://doi.org/10.1080/09603409.2021.2024420
  • Kassner M. Fundamentals of creep in metals and alloys. Amsterdam, The Netherlands: Elsevier Science; 2008.
  • Jazaeri H, Bouchard P, Hutchings M, et al. An investigation into creep cavity Development in 316H stainless steel. Metals. 2019;9(318):1–17. doi: 10.3390/met9030318
  • Greenwood G. Note on the formation of voids during creep. Philos Mag. 1963;8(88):707–709. doi: https://doi.org/10.1080/14786436308211169
  • Auerkari P, Salonen J, Holmström S, et al. Creep damage and long-term life modelling of an X20 steam line component. Eng Fail Anal. 2013;35:508–515. doi: 10.1016/j.engfailanal.2013.05.008
  • Walker N, Type IV creep cavitation in low alloy ferritic steel weldments, Ph.D. Thesis, University of Bristol, Engineering Materials and Structural Integrity Group, Department of Mechanical Engineering, 1997.
  • Siefert J, Parker J. Evaluation of the creep cavitation behaviour in grade 91 steels. Int J Pres Ves Pip. 2016;138:31–44. doi: 10.1016/j.ijpvp.2016.02.018
  • Henderson PJ, Sandström R. Low temperature creep ductility of OFHC copper. Mater Sci Eng. 1998;A246(1–2):143–150. doi: 10.1016/S0921-5093(97)00750-8
  • Raabe D, Sachtleber M, Zhao Z, et al. Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Materialia. 2001;49(17):3433–3441. doi: https://doi.org/10.1016/S1359-6454(01)00242-7
  • Lebensohn RA, Escobedo JP, Cerreta EK, et al. Modeling void growth in polycrystalline materials. Acta Materialia. 2013;61(18):6918–6932. doi: 10.1016/j.actamat.2013.08.004
  • Bunge HJ. Some applications of the Taylor theory of polycrystal plasticity. Krist Technol. 1970;5(1):145–175. doi: 10.1002/crat.19700050112