473
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Recent progress in the microstructurally based creep modelling of Ni-based alloy 617

ORCID Icon, , , , , , & show all
Pages 158-168 | Received 07 Mar 2023, Accepted 04 Nov 2023, Published online: 14 Nov 2023

References

  • Hald J. Microstructure and long-term creep properties of 9–12% Cr steels. Int J Pres Ves Pip. 2008;85(1–2):30–37. doi: 10.1016/j.ijpvp.2007.06.010
  • Klöwer J. Alloy 617 and derivatives. In: Di Gianfrancesco A, editor.Materials for ultra-supercritical and advanced ultra-supercritical power plants, Elsevier; 2017. pp. 547–570. 10.1016/B978-0-08-100552-1.00016-6
  • Gariboldi E, Cabibbo M, Spigarelli S, et al. Investigation on precipitation phenomena of Ni–22Cr–12Co–9Mo alloy aged and crept at high temperature. Int J Pres Ves Pip. 2008;85(1–2):63–71. https://doi.org/10.1016/j.ijpvp.2007.06.014
  • Riva A, Spindler M, Krein R, et al., “The new ECCC datasheet for alloy 617: multi-regime models to cover a wide range of temperature,” Proc. 5th Int. ECCC Creep & Fracture Conf., October 2021, Online, pp. 267–280.
  • Speicher M, Kauffmann F, Shim J-H, et al. Microstructure evolution in alloy 617 B after a long-term creep and thermal. Mater Sci Eng. 2018;A711:165–174. doi: 10.1016/j.msea.2017.11.004
  • Martino SD, Faulkner R, Hogg S, et al. Characterisation of microstructure and creep properties of alloy 617 for high-temperature applications. Mater Sci Eng. 2014;619:77–86. doi: 10.1016/j.msea.2014.09.046
  • Jiang H, Dong J, Zhang M. Phase transformation of alloy 617B during 10000h aging: an element redistribution-related process. J Alloys Compd. 2018;765:586–594. doi: 10.1016/j.jallcom.2018.06.229
  • Yamasaki S, Mitsuhara M, Nakashima H. Deformation Microstructure and fracture behavior in creep-exposed alloy 617. Mater Trans. 2017;58(3):442–449. doi: 10.2320/matertrans.M2016407
  • Krishna R, Atkinson H, Hainsworth S, et al. Gamma prime precipitation, dislocation densities, and TiN in creep-exposed Inconel 617 alloy. Metall Mater Trans A. 2016;47(1):178–193.
  • Benz J, Carroll L, Wright J, et al. Threshold stress creep behavior of alloy 617 at intermediate temperatures. Metall Mater Trans A. 2014;45(7):3010–3022. doi: 10.1007/s11661-014-2244-y
  • Dyson B. Microstructure based creep constitutive model for precipitation strengthened alloys: theory and application. Mater Sci Technol. 2009;25(2):213–220. doi: 10.1179/174328408X369348
  • Manonukul A, Dunne F, Knowles D. Physically-based model for creep in nickel-base superalloy C263 both above and below the gamma solvus. Acta Mater. 2002;50(11):2917–2931. doi: 10.1016/S1359-6454(02)00119-2
  • Ghoniem N, Matthews J, Amodeo R. A dislocation model for creep in Engineering Materials. Res Mech. 1990;29:197–219.
  • Yadav S, Sonderegger B, Stracey M, et al. Modelling the creep behaviour of tempered martensitic steel based on a hybrid approach. Mater Sci Eng. 2016;A662:330–341. doi: 10.1016/j.msea.2016.03.071
  • Riedlsperger F, Krenmayr B, Zuderstorfer G, et al. Application of an advanced mean-field dislocation creep model to P91 for calculation of creep curves. Materialia. 2020;12:100760. doi: 10.1016/j.mtla.2020.100760
  • Riedlsperger F, Wojcik T, Buzolin R, et al. Microstructural insights into creep of Ni-based alloy 617 at 700°C provided by electron microscopy and modelling. Mater Charact. 2023;198:112720. doi: 10.1016/j.matchar.2023.112720
  • Sonderegger B, Holzer I, Kozeschnik E, et al. Particle distance distributions and their effect on precipitation strengthening. Comput Mater Sci. 2011;11:148–153.
  • Sommitsch C, Sonderegger B, Ahmadi M, et al. Microstructurally based modeling of creep deformation and damage in martensitic steels. In: Ravindran Mahesh editors Microstructurally based modeling of creep deformation and damage in martensitic steels. Failure Analysis, IntechOpen 2022;London, UK:10.5772/intechopen.104381
  • Orowan E. Problems of plastic gliding. Proc Phys Soc. 1940;52(1):8–22. doi: 10.1088/0959-5309/52/1/303
  • Basirat M, Shrestha T, Potirniche G, et al. A study of the creep behavior of modified 9Cr-1Mo steel using continuum-damage modeling. Int J Plasticity. 2012;37:95–107. doi: 10.1016/j.ijplas.2012.04.004
  • Dyson B, McLean M. Creep deformation of Engineering alloys: developments from physical modelling. ISIJ Int. 1990;30(10):802–911. doi: 10.2355/isijinternational.30.802
  • Owen D, Langdon T. Low stress creep behavior: an examination of Nabarro—herring and Harper—Dorn creep. Mater Sci Eng. 1996;A216(1–2):20–29. doi: 10.1016/0921-5093(96)10382-8
  • Wang Z, Muransky O, Zhu H, et al. On the kinetics of gamma prime (γ’) precipitation and its strengthening mechanism in alloy 617 during a long-term thermal aging. Materialia. 2020;11:100682. doi: 10.1016/j.mtla.2020.100682
  • Tippelt B. Influence of temperature on microstructural parameters of cyclically deformed nickel single crystals. Phil Mag Lett. 1996;74(3):161–166. doi: 10.1080/095008396180317
  • Campbell C, Rukhin A. Evaluation of self-diffusion data using weighted means statistics. Acta Mater. 2011;59(13):5194–5201. doi: 10.1016/j.actamat.2011.04.055
  • Caillard D, Martin J. Chapter 8- dislocation climb. In: D. Caillard, J.L. Martin editors. Thermally activated mechanisms in crystal plasticity. Oxford, UK: Elsevier Science; 2003. pp. 281–319. doi:10.1016/S1470-1804(03)80038-X.
  • Hirth J, Lothe J. Theory of dislocations. 2nd ed. New York: John Wiley & Sons; 1982. pp. 569–573.
  • Lothe J. Theory of dislocation climb in Metals. J Appl Phys. 1960;31(6):1077–1081 . doi: 10.1063/1.1735749
  • Special Metals datasheet no. SMC-29 on Inconel 617, 2005; available online: https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-617.pdf. ( accessed 09-11-2023 from Linz, Austria).
  • CODATA, “The NIST reference on constants, units, and uncertainty,” 2014. [Online]. Available: https://physics.nist.gov/cgi-bin/cuu/Value?k. [ Accessed 20 1 2023].
  • Haseeb A. Modeling of the effects of athermal flow strength and activation energy for dislocation glide on the nanoindentation creep of nickel thin film at room temperature. Comp Mater Sci. 2006;37(3):278–283. doi: 10.1016/j.commatsci.2005.07.006
  • Wang YM, Hamza AV, Ma E. Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl Phys Lett. 2005;86(24):241917. doi: 10.1063/1.1946899
  • Xiao Y, Gan B, Sologubenko A, et al. Size- and strain rate-dependence of nickel and Ni–Co micropillars with varying stacking fault energy. Mater Sci Eng. 2021;800:140266. doi: 10.1016/j.msea.2020.140266
  • Burton B, Reynolds G. In defense of diffusional creep. Mater Sci Eng. 1995;191(1–2):135–141. doi: 10.1016/0921-5093(94)09643-0
  • Stechauner G, Kozeschnik E. Assessment of substitutional self-diffusion along short-circuit paths in al, fe and Ni. Calphad. 2014;47:92–99. doi: 10.1016/j.calphad.2014.06.008
  • Bose S, Banerjee R, Genc A, et al. Size induced metal–insulator transition in nanostructured niobium thin films: intra-granular and inter-granular contributions. J Phys. 2006;18(19):4553–4566. https://doi.org/10.1088/0953-8984/18/19/010
  • Sonderegger B. Modifications of stereological correction methods for precipitate parameters using transmission microscopy. Ultramicroscopy. 2006;106(10):941–950. doi: 10.1016/j.ultramic.2006.04.004
  • Schröders S, Sandlöbes S, Berkels B, et al. “On the structure of defects in the Fe7Mo6 µ-phase. Acta Mater. 2019;167:257–266. doi: 10.1016/j.actamat.2019.01.045
  • Riedlsperger F, Gsellmann B, Povoden-Karadeniz E, et al. Thermodynamic modelling and Microstructural study of Z-Phase formation in a ta-alloyed martensitic steel. Material. Materials. 2021;14(6):1332.
  • Lifshitz I, Slyozov V. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19(1–2):35–50. doi: 10.1016/0022-3697(61)90054-3
  • Wert C, Zener C. Interference of growing spherical precipitate particles. J Appl Phys. 1950;21(1):5–8. doi: 10.1063/1.1699422
  • Bullough C, Krein R, Lombardi P, et al., “Development of an ECCC interim creep rupture datasheet for alloy 617B using a strength averaging and blending approach”.Proc. of 4th International ECCC Conference 2017, pp. 1–11, Düsseldorf, Germany.
  • Schmidt K, “Komponentenverhalten im 700 °C-Kraftwerk- Numerische und experimentelle Untersuchungen”. PhD Thesis at MPAStuttgart, Germany, 2013; 10.18419/opus-6436.
  • Williams D, Carter C. Strain Fields. In: Transmission electron microscopy,” A textbook for materials science. Boston: Springer; 1996. pp. 412–419. doi: 10.1007/978-1-4757-2519-3_25
  • Riedlsperger F, Zuderstorfer G, Krenmayr B, et al. Application of a physically-based dislocation creep model to P92 for constructing TTR diagrams. Mater High Temp. 2022;39(2):161–166.
  • Zuderstorfer G, Riedlsperger F, Sonderegger B. CreeSo – software for creep simulation of complex alloys. Mater High Temp. 2022;39(6):596–602. doi: 10.1080/09603409.2022.2058237