60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the origin, physical basis and numerical stability of creep life equations

ORCID Icon
Pages 492-505 | Received 02 Oct 2023, Accepted 22 Nov 2023, Published online: 13 Dec 2023

References

  • Shingledecker JP, Evans ND, Pharr GM. Influences of composition and grain size on creep–rupture behavior of inconel® alloy 740. Mater Sci Eng A. 2013;578:277–286.
  • Zhang S, Takahashi Y. Creep and creep-fatigue deformation and life assessment of ni-based alloy 740H and alloy 617. ASME 2018 Pressure Vessels and Piping Conference, Praque, Czech Republic. American Society of Mechanical Engineers Digital Collection; 2018.
  • Cedro V, Garcia C, Render M. Use of the Wilshire equations to correlate and extrapolate creep data of HR6W and Sanicro 25. Materials. 2018;11(9):1585–1 to 29.
  • Evans M. Critical review and appraisal of traditional and New procedures for the quantification of creep fracture behavior using 1Cr–1Mo–0.25V steel. J Eng Mater Technol. 2009;131(2):021011–1 to 14. doi: 10.1115/1.3078391
  • Haque MS, Stewart CM. Metamodeling Time-Temperature Creep Parameters. J Pressure Vessel Technol. 2020;142(3):03154–1 to 14. doi: 10.1115/1.4045887
  • Wang Q, Yang M, Song XL, et al. Rationalization of creep data of creep - resistant steels on the basis of the New power law creep equation. Metall Mater Trans A. 2016;47(7):3479. doi: 10.1007/s11661-016-3540-5
  • Evans WJ, Harrison GF. The development of a universal equation for secondary creep rates in pure metals and engineering alloys. Metal Sci J. 1976;10(9):307–313. doi: 10.1179/msc.1976.10.9.307
  • Williams SJ. An automatic technique for the analysis of stress rupture data. Report MFR30017, Rolls Royce plc, Derby, UK; 1993.
  • Williams SJ, Bache MR, Wilshire B. Analysis of high temperature creep and creep fracture behavior. Mater Sci Technol. 2010;26(11):1332–1337. doi: 10.1179/026708310X12712410311730
  • Basoalto H, Vermeulen B, Brooks JW, et al. A New hyperbolic tangent modelling approach for the creep behaviour of the single crystal nickel-based superalloy CMSX4. Superalloys. 2008;515–520. TMS Society
  • Wenming Y, Hu X, Song Y. The relationship between creep and tensile properties of a nickel-based superalloy. Mater Sci Eng A. 2020;774:138847. doi: 10.1016/j.msea.2019.138847
  • Abdallah Z, Gray V, Whittaker MT, et al. A critical analysis of the conventionally employed creep lifing methods. Materials. 2014;7(5):3371–3398.
  • Abdallah Z, Whittaker MT, Bache MR. High temperature behaviour in the gamma titanium aluminide ts-45Al-2Mn-2Nb. Intermetallics. 2013;38:55–62. doi: 10.1016/j.intermet.2013.02.003
  • Tamura M, Esaka H, Shinozuka K. Stress and temperature dependence of time to rupture of heat resisting steels. ISIJ Inter. 1999;39(4):380–387. doi: 10.2355/isijinternational.39.380
  • Tamura M, Abe F, Tanigawa H. Larson–Miller Constant of Heat-Resistant Steel. Metall Mater Trans A. 2013;44(6):2645–2661. doi: 10.1007/s11661-013-1631-0
  • Montes JM, Cuevas FG, Cintas J. New creep law. Mater Sci Technol. 2012;28(3):377–379. doi: 10.1179/1743284711Y.0000000029
  • Hirth JP, Lothe J. Theory of dislocations. 2nd ed. New York, New York: John Wiley and Sons; 1982.
  • Barrett CR, Nix WD. A model for steady state creep based on the motion of jogged screw dislocations. Acta Metall. 1965;13(12):1247–1258. doi: 10.1016/0001-6160(65)90034-9
  • Yao Z, Zhang M, Dong J. Stress Rupture Fracture Model and Microstructure Evolution for Waspaloy. Metall Mater Trans A. 2013;44(7):3084–3098. doi: 10.1007/s11661-013-1660-8
  • Santella M, Tortorelli PF, Render M, et al., Effects of applied stress and grain size on creep - rupture prediction for Haynes 282 alloy, Mater Sci Eng A., 2022838:142785-1–142785–15.
  • Render M, unpublished work
  • Wilshire B, Scharning PJ. A new methodology for analysis of creep and creep fracture data for 9–12% chromium steels. Int Mater Rev. 2008;53(2):91–104.
  • American Society for Testing and Materials. ASTM E21–09: standard test method for elevated temperature tension tests of metallic materials. West Conshohocken (PA): ASTM; 2009.
  • Xia A. Hot tensile and fracture behavior of 35CrMo steel at Elevated temperatures and strain rates. Metals. 2016;6(9):210.
  • Gopinath, Gopinath K, Gogia AK, et al. Tensile properties of ni-based superalloy 720Li: temperature and strain rate effects. Metall Mater Trans A. 2008;39(10):2340.
  • Klueh RL, Oakee RE. High strain rate tensile properties of annealed 2 1/4Cr-1Mo steel. Annual ASME Meeting, Houston, TX; 1975.
  • Spindler MW. Can long term time to rupture data be predicted using only tensile test data?. 5th International ECCC2021 Conference. 18-20 October 2021, Virtual Conference; 2021. p. 1–5
  • Sikka VK, Patriarca P. Data package for modified 9Cr-1Mo alloy, for Section III and N47 design allowables. ORNL Report, Revision; 1984, November.
  • Gaffard V. Experimental study and modelling of high temperature creep flow and damage behavior of 9Cr1Mo-NbV. PhD thesis, Ecole Nationale Superieure des Mines de Paris; 2004, p. 29–33 and 119.
  • Lee H-Y, Lim D-W, Jeong J-Y. Effects of long- time service at high temperature on the material strength and J-R curve of grade 91 steel. Eng Fract Mech. 2017;178:445–456. doi: 10.1016/j.engfracmech.2017.02.022
  • Bouchenot T, Patel K, Gordon AP, et al. Creation of a life prediction model for combined high - cycle fatigue and creep. J Eng Mater Technol. 2023;145(3):031004–1 to 11 .
  • Maruyama K, Dewees D, Abe F, et al. Examinations of equations for creep rupture life with a large creep database on grade 91 steel. Int J Pres Ves Pip. 2022;199:104738. doi: 10.1016/j.ijpvp.2022.104738
  • Sklenicka V, Kucharowa K, Dlouhy A, et al. Creep behaviour and microstructure of a 9% cr steel. Proceedings of the conference on Materials for Advanced Power Engineering, Liege, Belgium, 03-06 October; 1994. p. 435–444 .
  • Zhao YR, Yao HP, Song XL, et al. On the physical models for predicting the long-term creep strengths and lifetimes of modified 9Cr-1Mo steel. J Alloys Compd. 2017;726:1246–1254. doi: 10.1016/j.jallcom.2017.08.082
  • Kimura K, Takahashi Y Evaluation of long-term creep strength of ASME grades 91, 92 and 122 type steels. Proceedings of the AME 2012 Pressure Vessels & Piping Conference, Toronto, Canada, paper no. PVP2012-78323; 2012, July 15-1. p. 309–316
  • Bueno LO, Sobrinho JFR. Correlation between creep and hot tensile behaviour for 2.25Cr-1Mo steel from 500ºC to 700ºC part 1: an assessment according to usual relations involving stress, temperature, strain rate and rupture time. Matéria (Rio J). 2012;17(3):1098–1108. doi: 10.1590/S1517-70762012000300007
  • Bolton J. Rupture modelling and extrapolation of a sparse dataset for inconel 740H. Int J Pres Ves Pip. 2021;194:104543. doi: 10.1016/j.ijpvp.2021.104543
  • Evans M. Testing model structure through a unification of some modern parametric models of creep: an Application to 316H stainless steel. Metall Mater Trans A. 2020;51(2):697–707. doi: 10.1007/s11661-019-05540-2
  • Nowick AS, Machlin ES. Quantitative treatment of the creep of metals by dislocation and rate-process theories. No. NACA-TN-1039. Aircraft Engine Research Lab; 1946.
  • Weertman J. Steady- state creep through dislocation climb. J Appl Phys. 1957;28(3):362–364. doi: 10.1063/1.1722747
  • Garofalo F. An empirical relation defining the stress dependence of minimum creep rate in metals. Trans Metal Soc AIME. 1963;227:352–357.
  • Christopher J, Choudhary BK. Application of soft constrained machine learning algorithms for creep rupture prediction of an austenitic heat resistant steel Sanicro 25. Philos Mag. 2016;96(21):2256–2279. doi: 10.1080/14786435.2016.1197435
  • Karthikeyan S, Viswanathan GB, Mills MJ. Evaluation of the jogged-screw model of creep in equiaxed γ-TiAl: identification of the key substructural parameters. Acta Materialia. 2004;52(9):2577–2589.
  • He J-J, Sandstrom R. Jing Zhang and Hai-Ying Qin.” Application of soft constrained machine learning algorithms for creep rupture prediction of an austenitic heat resistant steel Sanicro 25. J Mater Res Technol. 2023;22:923–937. doi: 10.1016/j.jmrt.2022.11.154
  • Weertman J. Theory of steady- state creep based on dislocation climb. J Appl Phys. 1955;26(10):1213–1217. doi: 10.1063/1.1721875
  • Cedro V, Pellicotte J, Bakshi O, et al. Application of a modified hyperbolic sine creep rate equation to correlate uniaxial creep rupture data of Sanicro 25 and HR6W. Mater High Temp. 2020;37(6):434–444.
  • Sanicro 25 Tube and Pipe, Seamless - Data Sheet. Sandvik. 2017, July.
  • Kassner ME, Perez-Prado MT. Fundamentals of creep in metals and alloys. Amsterdam, Netherlands: Elsevier Ltd; 2004.
  • Cedro V, Pellicotte J, Render M. Application of a modified hyperbolic sine creep rate equation to correlate uniaxial creep data vs. stress and temperature for creep resistant low chrome steel alloys. Mater High Temp. 2022;39(4):262–277. doi: 10.1080/09603409.2022.2096539

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.