552
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolution and criteria for early creep damage

ORCID Icon, , , &
Pages 177-186 | Received 14 Mar 2023, Accepted 10 Dec 2023, Published online: 26 Dec 2023

References

  • Di Gianfrancesco A. The fossil fuel power plants technology, materials for ultra-supercritical and advanced ultra-supercritical power plants. A. Di Gianfrancesco, ed. London, UK: Elsevier/Woodhead Publishing; 2017. p. 1–47.
  • Pohja R, Auerkari P, Vilaça P. Modelling for creep cavitation damage and life of three metallic materials. Mater High Temp. 2022;39(1):86–96. doi: 10.1080/09603409.2021.2024420
  • Pohja R, Holmström S, Auerkari P, et al. Predicted life of P91 steel for cyclic high temperature service. Mater High Temp. 2017;34:301–310. doi: 10.1080/09603409.2017.1383710
  • Ragab R, Parker J, Li M, et al. Requirements for and challenges in developing improved creep ductility-based constitutive models for tempered martensitic CSEF steels. J Mater Res Technol. 2022;17:3337–3360. doi: 10.1016/j.jmrt.2022.02.047
  • Auerkari P, Salonen J, Holmström S, et al. Creep damage and long term life modelling of an X20 steam line component. Eng Fail Anal. 2013;35:508–515. doi: 10.1016/j.engfailanal.2013.05.008
  • Siefert J, Parker J. Evaluation of the creep cavitation behaviour in grade 91 steels. Int J Pres Ves Pip. 2016;138:31–44. doi: 10.1016/j.ijpvp.2016.02.018
  • Webster G. Trends in high temperature structural integrity assessment. J ASTM Int. 2005;3(2):1–18. doi: 10.1520/JAI13229
  • BS 7910. Guide to methods for assessing the acceptability of flaws in metallic structures. The British Standards Institution; 2019. ISBN 978 0 580 52086 0.
  • Ainsworth RA. R5 procedures for assessing structural integrity of components under creep and creep–fatigue conditions. Int Mater Rev. 2006;51(2):107–126. doi: 10.1179/174328006X79463
  • Shibli A, Le Mat Hamata N. Creep crack growth in P22 and P91 welds — overview from SOTA and HIDA projects. Int J Pres Ves Pip. 2001;78(11–12):785–793. doi: 10.1016/S0308-0161(01)00091-6
  • Webster GA, Ainsworth RA. High temperature component life assessment. London, UK: Chapman & Hall; 1994. p. 327.
  • Maleki S, Zhang Y, Nikbin K. Prediction of creep crack growth properties of P91 parent and welded steel using remaining failure strain criteria. Eng Fract Mech. 2010;77(15):3035–3042. doi: 10.1016/j.engfracmech.2010.04.022
  • Neubauer B, Wedel U, Restlife estimation of creeping components by means of replicas, ASME International Conference on Advances in Life Prediction Methods, editors Woodford DA Whitehead JR, New York/ASME 1983, p. 307–314.
  • Riedel H. Fracture at high temperatures. Berlin, Germany: Springer-Verlag; 1987. p. 67–129.
  • DIN 17175-1. Seamless tubes of heat-resistant steels; Technical conditions of delivery. Berlin, Germany: DIN; 1959.
  • Baylac G, Bullough C, Holmström S, et al. New approaches to determine negligible creep. Mater High Temp. 2022;39(6):668–677. doi: 10.1080/09603409.2022.2135735
  • CEN Technical Report. New approaches to determine negligible creep of steels for EN 13445, CEN/TC 54 WG59, submitted to TC54, under review, 2022.
  • Ennis PJ, Schuster H, Bendick W. A comparison of the creep rupture behaviour of new and service exposed low alloy steels. Mater High Temp. 1995;13(2):87–92. doi: 10.1080/09603409.1995.11689504
  • EN 10028-2:2017. Flat products made of steels for pressure purposes. Part 2: non-alloy and alloy steels with specified elevated temperature properties, CEN; 2017.
  • Holmström S, Auerkari P. Robust prediction of full creep curves from minimal data and time to rupture model. Energy Mater. 2006;1(4):249–255. doi: 10.1179/174892406X173594
  • Holmström S. Engineering tools for robust creep modeling [ A doctoral thesis]. Aalto University, Laboratory of Engineering Materials; 2010, ISBN: 978-951-38-7379-0.
  • Wilshire B, Scharning PJ, Hurst R. A new approach to creep data assessment. Mater Sci Eng A. 2009;510–511:3–6. doi: 10.1016/j.msea.2008.04.125
  • Wilshire B, Scharning PJ. Extrapolation of creep life data for 1Cr–0.5Mo steel. Int J Pres Ves Pip. 2008;85(10):739–743. doi: 10.1016/j.ijpvp.2008.04.002
  • ECCC DATA SHEETS. Low alloy ferritic steels, steel 13CrMo4-5, WG3.2. EUROPEAN CREEP COLLABORATIVE COMMITTEE (ECCC); 1996.
  • Keyence, Laser Scanning Microscopes. [cited 2023 Feb 15]. https://www.keyence.eu/products/microscope/laser-microscope/
  • Auerkari P, Salonen J, Borggreen K. Guidelines for evaluating in-service creep damage. Nordtest Report NT TR 302. VTT, Espoo; 1995. p. 15.
  • VGB-S-517-00-2014-11. VGB standard guidelines for rating the microstructural composition and creep rupture damage of creep-resistant steel for high-pressure pipelines and boiler components and their weld connections. VGB Powertech, Essen. 71 p + app.
  • Program for life assessments of pressure equipment with limited lifetime (in Danish). Danish Working Environment Authority (WEA) guideline B.4.12. 2011, p. 27.
  • ISO 18265. Metallic materials - conversion of hardness values. Geneva: ISO; 2013. p. 161.
  • Eggeler G, Ramteke A, Coleman M, et al. Analysis of creep in a welded ‘P91’ pressure vessel. Int J Pres Ves Pip. 1994;60(3):237–257. doi: 10.1016/0308-0161(94)90125-2
  • Parker J. In-service behavior of creep strength enhanced ferritic steels grade 91 and grade 92 – Part 1 parent metal. Int J Pres Ves Pip. 2013;101:30–36. doi: 10.1016/j.ijpvp.2012.10.001
  • Parker J. In-service behaviour of creep strength enhanced ferritic steels grade 91 and grade 92 – Part 2 weld issues. Int J Pres Ves Pip. 2014;114–115:76–87. doi: 10.1016/j.ijpvp.2012.11.004
  • Segle P, Tu S, Storesund J, et al. Some issues in life assessment of longitudinal seam welds based on creep tests with cross-weld specimens. Int J Pressure Vessels Piping. 1996;66(1–3):199–222. doi: 10.1016/0308-0161(95)00096-8
  • ASTM E1351-01. Standard practice for production and evaluation of field metallographic replicas. West Conshohocken, PA: ASTM International; 2012. p. 6. Reapproved.
  • ISO 3057. Non-destructive testing – metallographic replica techniques of surface examination. Geneva: ISO; 1998. p. 2.
  • Toft L, Marsden R. Structural processes in creep. Special Report No. 70. London: The Iron and Steel Institute; 1961, p. 276–294.
  • Salonen J, Auerkari P, Microstructural degradation of boiler tube steels under long term exposure to high temperature. Report No. 280. Espoo: VTT Manufacturing Technology; 1996.
  • Schubert J. Kriech- und Schädigungsverhalten der Mischverbindung G911 gegen P91 bei 600 °C. VDE Seminar. Düsseldorf; 2007 November 30.
  • EN 13480-3. 2017 metallic industrial piping. Part 3: design and calculation, Annex R: surveillance of components operating in the creep range. CEN; 2017.