82
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mechanical properties assessment of additively manufactured Ti64 alloy using small punch tests

&
Pages 187-194 | Received 09 Mar 2023, Accepted 11 Dec 2023, Published online: 19 Dec 2023

References

  • Manahan MP, Argon AS, Harling OK. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J Nucl Mater. 1981;104:1545–1550. doi: 10.1016/0022-3115(82)90820-0
  • Lucas GE. Review of small specimen test techniques for irradiation testing. Metall Mater Trans A. 1990;21(5):1105–1119. doi: https://doi.org/10.1007/BF02698242
  • Rabenberg EM, Jaques BJ, Sencer BH, et al. Mechanical behavior of AISI 304SS determined by miniature test methods after neutron irradiation to 28dpa. J Nucl Mater. 2014;448(1–3):315–324. doi: https://doi.org/10.1016/j.jnucmat.2014.02.018
  • Suzuki M, Eto M, Fukaya K, et al. Evaluation of toughness degradation by small punch (SP) tests for neutron-irradiated 214Cr-1Mo steel. J Nucl Mater. 1991;179–181:441–444. doi: 10.1016/0022-3115(91)90119-R
  • Ishii T, Ohmi M, Saito J, et al. Development of a small specimen test machine to evaluate irradiation embrittlement of fusion reactor materials. J Nucl Mater. 2000;283-287:1023–1027. doi: https://doi.org/10.1016/S0022-3115(00)00093-3
  • Dymáček P. Short term creep small punch testing of P91 and P92 steels, observations and correlations with the numerical results. Key Eng Mater. 2011;465:179–182. doi: 10.4028/www.scientific.net/KEM.465.179
  • Kappou E, Holmstrom B. Small punch creep tests for grade 92 forgings. JRC Publications Repository. 2018. doi: 10.2760/12580
  • García TE, Rodríguez C, Belzunce FJ, et al. Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloys Compd. 2014;582:708–717. doi: 10.1016/J.JALLCOM.2013.08.009
  • Mao X, Takahashi H. Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests. J Nucl Mater. 1987;150(1):42–52. doi: https://doi.org/10.1016/0022-3115(87)90092-4
  • Contreras MA, Rodríguez C, Belzunce FJ, et al. Use of the small punch test to determine the ductile-to-brittle transition temperature of structural steels. Fatigue Fract Eng Mater Struct. 2008;31:727–737. doi: 10.1111/j.1460-2695.2008.01259.x
  • Bruchhausen M, Holmström S, Simonovski I, et al. Recent developments in small punch testing: tensile properties and DBTT. Theor Appl Fract Mech. 2016;86:2–10. doi: 10.1016/J.TAFMEC.2016.09.012
  • Holmström S, Li Y, Dymacek P, et al. Creep strength and minimum strain rate estimation from small punch creep tests. Mater Sci Eng A. 2018;731:161–172. doi: 10.1016/j.msea.2018.06.005
  • Dobeš F, Milička K. Application of creep small punch testing in assessment of creep lifetime. Mater Sci Eng A. 2009;510-511:440–443. doi: https://doi.org/10.1016/j.msea.2008.04.087
  • Bruchhausen M, Austin T, Holmström S, et al. European standard on small punch testing of metallic materials, in: American Society of mechanical Engineers Digital Collection. 2017. doi: 10.1115/PVP2017-65396
  • Dymáček P, Li Y, Dobeš F, et al. New approach to determine uniaxial creep properties from small punch creep curves. Mater High Temp. 2019;36(2):157–164. doi: https://doi.org/10.1080/09603409.2018.1495876
  • Lancaster RJ, Jeffs SP, Haigh BJ, et al. Derivation of material properties using small punch and shear punch test methods. Mater Design. 2022;215:110473. doi: 10.1016/j.matdes.2022.110473
  • Dobeš F, Dymáček P, Besterci M. Estimation of the mechanical properties of aluminium and an aluminium composite after equal channel angular pressing by means of the small punch test. Mater Sci Eng A. 2015;626:313–321. doi: 10.1016/j.msea.2014.12.054
  • Bártková D, Langer J, Dymáček P, et al. Determination of mechanical properties of magnesium alloys and composites by small punch testing. Appl Mech Mater. 2016;821:435–441. doi: 10.4028/www.scientific.net/AMM.821.435
  • Dymáček P, Dobeš F, Jarý M, et al. Small punch testing of Fe-al based alloys with Ti and Nb additions. IOP Conf Ser Mater Sci Eng. 2020;723(1):012006. doi: 10.1088/1757-899X/723/1/012006
  • Lancaster RJ, Illsley HW, Davies GR, et al. Modelling the small punch tensile behaviour of an aerospace alloy. Mater Sci Technol. 2016;33(9):1065–1073. doi: 10.1080/02670836.2016.1230168
  • Lucon E, Benzing J, Hrabe N. Small punch testing to estimate mechanical properties of additively manufactured Ti-6Al-4V. Washington, DC, USA: US Department of Commerce, National Institute of Standards and Technology; 2020.
  • Illsley H, Lancaster R, Jeffs S, et al., Small punch testing of Electron Beam Melted (EBM) Ti-6Al-4V, Proceedings of the 13th World Conference on Titanium. 2016 1401–1406. 10.1002/9781119296126.CH236.
  • Vigié H, de Paula T, Surand M, et al. Low temperature strain rate sensitivity of titanium alloys. Solid State Phenom. 2016;258:570–573. doi: 10.4028/www.scientific.net/SSP.258.570
  • Surand M. Étude du comportement viscoplastique en traction et en fluage de l’alliage TA6V de 20 à 600 degrés Celsius. Toulouse, INPT: These de doctorat; 2013.
  • ASTM E3205-20. Standard Test Method for Small Punch Testing of Metallic Materials. West Conshohocken, PA. ASTM International. 2020.
  • NF EN 10371-Matériaux Métalliques—Méthode d’essai de Micro-Emboutissage, (2021).
  • Pantawane MV, Sharma S, Sharma A, et al. Coarsening of martensite with multiple generations of twins in laser additively manufactured Ti6Al4V. Acta Materialia. 2021;213:116954. doi: 10.1016/j.actamat.2021.116954
  • Wang H, Chao Q, Yang L, et al. Introducing transformation twins in titanium alloys: an evolution of α-variants during additive manufacturing. Mater Res Lett. 2021;9(3):119–126. doi: https://doi.org/10.1080/21663831.2020.1850536
  • Planques P. Elaboration, vieillissement et endommagement de barrières thermiques de forte épaisseur pour turbomoteur. These de doctorat - Toulouse INPT; 2018. http://www.theses.fr/2018INPT0087
  • Rosen RS, Paddon SP, Kassner ME. The variation of the yield stress of Ti alloys with strain rate at high temperatures. J Materi Eng Perform. 1999;8(3):361–367. doi: 10.1361/105994999770346927
  • Majorell A, Srivatsa S, Picu RC. Mechanical behavior of Ti–6Al–4V at high and moderate temperatures—Part I: experimental results. Mater Sci Eng A. 2002;326(2):297–305. doi: https://doi.org/10.1016/S0921-5093(01)01507-6
  • Cao S, Wu X, Lim CVS, et al. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: process, post-process treatment, microstructure, and property, light: advanced manufacturing. 2021;2(2):1–20. doi: 10.37188/LAM.2021.020
  • Dumontet N. Étude de l’alliage de titane TA6V obtenu par fabrication additive : microstructure, élasticité et contraintes résiduelles. These de doctorat - Toulouse INPT; 2019. http://www.theses.fr/2019INPT0099
  • Viespoli LM, Bressan S, Itoh T, et al. Creep and high temperature fatigue performance of as build selective laser melted Ti-based 6Al-4V titanium alloy. Eng Fail Anal. 2020;111:104477–104477. doi: 10.1016/J.ENGFAILANAL.2020.104477
  • Badea L, Surand M, Ruau J, et al. CREEP BEHAVIOR of Ti-6Al-4V from 450°C to 600°C. U.P.B. Sci Bull Ser B. 2014;76:185–196.
  • Briguente LANS, Couto AA, Guimarães NM, et al. Determination of creep parameters of Ti-6Al-4V with bimodal and equiaxed microstructure. Def Diffus Forum. 2012;326–328:520–524. doi: 10.4028/www.scientific.net/DDF.326-328.520

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.