96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of heat treatment on the microstructure and creep response of additively manufactured cobalt superalloy Mar M509

, , , &
Pages 506-517 | Received 06 Oct 2023, Accepted 29 Dec 2023, Published online: 10 Jan 2024

References

  • Hada S, Yuri M, Masada J, et al. Evolution and future trend of large frame gas turbines: a new 1600°C J-class gas turbine. In: Vol.3 cycle Innov. Educ. Electr. Power Fans Blowers Ind. Cogener. Copenhagen, Denmark: American Society of Mechanical Engineers; 2012. pp. 599–606. doi: 10.1115/GT2012-668574
  • Steven RA, Flewitt PEJ. Microstructural changes which occur during isochronal heat treatment of the nickel-base superalloy IN-738,’. J Mater Sci. 1978;13(2):367–376. doi: https://doi.org/10.1007/BF00647782
  • Sims CT, Stoloff NS, Hagel WC, eds. Superalloys II. New York: Wiley; 1987.
  • Hamza HM, Deen KM, Khaliq A, et al. Microstructural, corrosion and mechanical properties of additively manufactured alloys: a review. Crit Rev Solid State Mater Sci. 2022;47(1):46–98. doi: https://doi.org/10.1080/10408436.2021.1886044
  • Koutsoukis T, Zinelis S, Eliades G, et al. Selective laser melting technique of Co-cr dental alloys: a review of structure and properties and comparative analysis with other available techniques: Current selective laser melting of Co-cr alloys. J Prosthodont. 2015;24(4):303–312. doi: https://doi.org/10.1111/jopr.12268
  • Cloots M, Kunze K, Uggowitzer PJ, et al. Microstructural characteristics of the nickel-based alloy IN738LC and the cobalt-based alloy mar-M509 produced by selective laser melting. Mater Sci Eng A. 2016;658:68–76. doi: 10.1016/j.msea.2016.01.058
  • Ferreri NC, Ghorbanpour S, Bhowmik S, et al. Effects of build orientation and heat treatment on the evolution of microstructure and mechanical properties of alloy Mar-M-509 fabricated via laser powder bed fusion. Int J Plast. 2019;121:116–133. doi: 10.1016/j.ijplas.2019.06.002
  • Eghtesad A, Knezevic M. Modeling cyclic plasticity of additively manufactured alloy Mar-M-509 using a high-performance spectral-based micromechanical model. Appl Eng Sci. 2021;7:100065. doi: 10.1016/j.apples.2021.100065
  • Ghorbanpour S, Bicknell J, Knezevic M. Fatigue strength of additive manufactured Mar-M-509 superalloy. Mater Sci Eng A. 2022;840:142913. doi: 10.1016/j.msea.2022.142913
  • Wang X, Chen C, Zhao R, et al. Selective laser melting of carbon-free Mar-M509 Co-based superalloy: Microstructure, micro-cracks, and mechanical anisotropy. Acta Metall Sin Engl Lett. 2022;35(3):501–516. doi: https://doi.org/10.1007/s40195-021-01348-5
  • Hooper PA. Melt pool temperature and cooling rates in laser powder bed fusion. Addit Manuf. 2018;22:548–559. doi: 10.1016/j.addma.2018.05.032
  • Cornacchia G, Cecchel S, Battini D, et al. Microstructural, mechanical, and tribological characterization of selective laser melted CoCrMo alloy under different heat treatment conditions and hot isostatic pressing. Adv Eng Mater. 2022;24(4):2100928. doi: https://doi.org/10.1002/adem.202100928
  • Beltran AM, Sims CT, Wagenheim NT. The high temperature properties of mar-M alloy 509’. JOM. 1969;21(9):39–47. doi: https://doi.org/10.1007/BF03378916
  • BS EN ISO 204:2018. Metallic materials. Uniaxial creep testing in tension. Method of test. 3rd ed.
  • Köster W, Sperner F. Das Dreistoffsystem Kobalt—Chrom—Kohlenstoff. Arch für Eisenhüttenwes. 1955;26(9):555–559. doi: https://doi.org/10.1002/srin.195502078
  • Opiekun Z. Influence of zirconium and heat treatment on the structure of heat-resistant cobalt casting alloys of MAR-M509 type. J Mater Sci. 1987;22(5):1547–1556. doi: https://doi.org/10.1007/BF01132373
  • Zhen-Wei W, Wen-Xia Z, Jing-Yi Z, et al. Microstructure evolution of K6509 cobalt-base superalloy for over-temperature. Procedia Eng. 2015;99:1302–1310. doi: 10.1016/j.proeng.2014.12.663
  • Reed RC. The superalloys: fundamentals and applications. 1st ed. Cambridge University Press; 2006. doi: 10.1017/CBO9780511541285.
  • Cheng T, Wang Y, Zhao Y, et al. Effect of remelting solution heat treatment on microstructure evolution of nickel-based single crystal superalloy DD5’. Mater Charact. 2022;192:112186. doi: 10.1016/j.matchar.2022.112186
  • Bišs V. Phase analysis of standard and molybdenum-modified mar-M509 superalloys. J Test Eval. 1977;5(3):217–223. doi: https://doi.org/10.1520/JTE11640J
  • Yang FM, Sun XF, Zhang W, et al. Secondary M6C precipitation in K40S cobalt-base alloy. Mater Lett. 2001;49(3–4):160–164. doi: https://doi.org/10.1016/S0167577X(00)00361X
  • Zangeneh S, Farhangi H. Influence of service-induced microstructural changes on the failure of a cobalt-based superalloy first stage nozzle. Mater Des. 2010;31(7):3504–3511. doi: https://doi.org/10.1016/j.matdes.2010.02.021
  • Zangeneh S, Lashgari HR, Asnavandi M. The effect of long-term service exposure on the stability of carbides in Co–cr–Ni–W (X-45) superalloy. Eng Fail Anal. 2018;84:276–286. doi: 10.1016/j.engfailanal.2017.11.018
  • Jiang WH, Guan HR, Hu ZQ. Effects of heat treatment on microstructures and mechanical properties of a directionally solidified cobalt-base superalloy. Mater Sci Eng A. 1999;271(1–2):101–108. doi: https://doi.org/10.1016/S0921-5093(99)00183-5
  • Szala J, Szczotok A, Richter J, et al. A, selection of methods for etching carbides in MAR-M509 cobalt-base superalloy and acquisition of their images. Mater Charact. 2006;56(4–5):325–335. doi: https://doi.org/10.1016/j.matchar.2005.11.015
  • Hamar-Thibault S, Durand-Charre M, Andries B. Carbide transformations during aging of wear-resistant cobalt alloys. Metall Trans A. 1982;13(4):545–550. doi: https://doi.org/10.1007/BF02644417
  • Jiang WH, Yao XD, Guan HR, et al. Technical note relationship between degeneration of M 7 C 3 and precipitation of M 23 C 6 in a cobalt base superalloy. Mater Sci Technol. 1999;15(5):596–598. doi: https://doi.org/10.1179/026708399101506157
  • Gui W, Zhang H, Yang M, et al. The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. J Alloys Compd. 2017;695:1271–1278. doi: 10.1016/j.jallcom.2016.10.256
  • Jiang L, Hu R, Kou H, et al. The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy. Mater Sci Eng A. 2012;536:37–44. doi: 10.1016/j.msea.2011.11.060
  • Yoon JG, Jeong HW, Yoo YS, et al. Influence of initial microstructure on creep deformation behaviors and fracture characteristics of Haynes 230 superalloy at 900°C. Mater Charact. 2015;101:49–57. doi: 10.1016/j.matchar.2015.01.002
  • Tang YT, Wilkinson AJ, Reed RC. Grain boundary serration in nickel-based superalloy inconel 600: generation and effects on mechanical behavior. Metall Mater Trans A. 2018;49(9):4324–4342. doi: https://doi.org/10.1007/s11661-018-4671-7
  • Abedi HR, Ojo OA, Cao X. Effect of cooling rate on precipitation behavior of gamma prime in a newly developed Co-based superalloy. JOM. 2020;72(11):4054–4059. doi: https://doi.org/10.1007/s11837-020-04241-1
  • Whittenberger JD. Elevated temperature mechanical properties and residual tensile properties of two cast superalloys and several nickel-base oxide dispersion strengthened alloys. Metall Trans A. 1981;12(2):193–206. doi: https://doi.org/10.1007/BF02655192
  • Schirra JJ, Borg CA, Hatala RW. Mechanical property and microstructural characterization of vacuum die cast superalloy materials. Superalloys 2004 Tenth Int Symp, TMS. 2004;553–561. doi: 10.7449/2004/Superalloys_2004_553_561
  • Mróz M, Orłowicz W, Tupaj M, et al. Stress rupture test of MAR-M509 alloy with structure refined by rapid resolidification. Arch Foundry Eng. 2012;12(4):117–120. doi: https://doi.org/10.2478/v10266-012-0118-6
  • Berthod P. High temperature properties of several chromium-containing Co-based alloys reinforced by different types of MC carbides (M=ta, Nb, Hf and/or Zr)’. J Alloys Compd. 2009;481(1–2):746–754. doi: https://doi.org/10.1016/j.jallcom.2009.03.091
  • Berthod P. Looking for new polycrystalline MC-reinforced cobalt-based superalloys candidate to applications at 1200°C. Adv Mater Sci Eng. 2017;2017:1–9. doi: 10.1155/2017/4145369
  • Berthod P, Gomis J-P, Aranda L. Oxide scale spallation behaviour of cast chromia-forming TaC-strengthened superalloys. Mater Sci Technol. 2020;36(14):1587–1602. doi: https://doi.org/10.1080/02670836.2020.1809143
  • Lüthy H, White RA, Sherby OD. Grain boundary sliding and deformation mechanism maps. Mater Sci Eng. 1979;39(2):211–216. doi: https://doi.org/10.1016/0025-5416(79)90060-0
  • Hosseini E, Popovich VA. A review of mechanical properties of additively manufactured inconel 718. Addit Manuf. 2019;30:100877. doi: 10.1016/j.addma.2019.100877

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.