258
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of metallurgical risk factors in post-test, advanced 9% Cr creep strength enhanced ferritic (CSEF) steel

, , &
Pages 73-83 | Received 09 Mar 2023, Accepted 10 Sep 2023, Published online: 26 Feb 2024

References

  • Di Gianfrancesco A. The fossil fuel power plants technology. Elsevier; 2017. doi: 10.1016/b978-0-08-100552-1.00001-4
  • Von Hagen I, Bendick W. Creep resistant ferritic steels for power plants. Niobium, Science And Technology. 2001.
  • Spiegel M, Schraven P. New austenitic steels for the advanced USC power plants. Elsevier; 2017. doi: 10.1016/b978-0-08-100552-1.00011-7
  • Maruyama K, Sawada K, Koike JI. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Inter. 2001 Jun;41(6):641–653. doi: 10.2355/isijinternational.41.641
  • Di Gianfrancesco A, Blum R. A-USC programs in the European Union. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. 2017;773–846. doi: 10.1016/b978-0-08-100552-1.00024-5
  • Di Gianfrancesco A. New Japanese materials for A-USC power plants. Elsevier; 2017. doi: 10.1016/b978-0-08-100552-1.00013-0
  • Zhou JH, Shen YF, Hong YY, et al. Strengthening a fine-grained low activation martensitic steel by nanosized carbides. Mater Sci Eng A. 2020;769(September 2019):138471. doi: 10.1016/j.msea.2019.138471
  • Harries DR. High-chromium ferritic and martensitic steels for nuclear applications. 2001. doi: 10.1520/mono3-eb
  • Caminada S. “Long term microstructural evolution of 9-12% Cr martensitic steels for advanced USC plants,” New Developments on Metallurgy And Applications of High Strength Steels: Buenos Aires 2008, vols 1 and 2, proceedings, no. Conference on New Developments on Metallurgy and Applications of High Strength Steels. Tenaris, Piazza Caduti 6 Luglio 1944 1, I-24044 Dalmine, BG, Italy, pp. 369±, 2008.
  • Hawk JA, Jablonski PD. Heat-resistant advanced 9% Cr steel for fossil energy power generation. Advanced Materials - TechConnect Briefs 2017. 2017;2:152–155.
  • Detrois M, Jablonski PD, Hawk JA. Evolution of tantalum content during vacuum induction melting and electroslag remelting of a novel martensitic steel. Metallurgical And Materials Transactions B: Process Metallurgy And Materials Processing Science. 2019;50(4):1686–1695. doi:10.1007/s11663-019-01614-z
  • Zhu S, Yang M, Song XL, et al. A few observations on laves phase precipitation in relation to its effects on creep rupture strength of ferritic steels based on Fe–9Cr (wt%) alloys at 650 °C. Mater Sci Eng A. 2014;619:47–56. doi: 10.1016/j.msea.2014.09.059
  • Foldyna V, Jakobová A, Vodárek V, et al. Chromium modified steels — metallurgical understanding. Materials For Advanced Power Engineering 1994. 1994. doi: 10.1007/978-94-011-1048-8_37
  • Orlová A, Buršík J, Kuchařová K, et al. Microstructural development during high temperature creep of 9% Cr steel. Mater Sci Eng A. 1998;245(1):39–48. doi: 10.1016/S0921-5093(97)00708-9
  • Pandey C, Giri A, Mahapatra MM. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties. Mater Sci Eng A. 2016;664:58–74. doi: 10.1016/j.msea.2016.03.132
  • Cerjak H, Hofer P, Schaffernak B. Influence of microstructural aspects on the service behaviour of advanced power plant steels. ISIJ Inter. 1999;39(9):874–888. doi: 10.2355/isijinternational.39.874
  • Hong SP, Il Kim S, Ahn TY, et al. Effects of extended heat treatment on carbide evolution in Cr-mo steels. Mater Charact. 2016;115:8–13. doi: 10.1016/j.matchar.2016.03.013
  • Korcakova L, Hald J, Somers MAJ. Quantification of laves phase particle size in 9CrW steel. Mater Charact. 2001;47(2):111–117. doi:10.1016/s1044-5803(01)00159-0
  • Abe F. Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels. Mater Sci Eng A-Struct Mater Proper Microstruct Process. 2001;319(12th International Conference on the Strength of Materials (ICSMA 12)):770–773. doi: 10.1016/s0921-5093(00)02002-5
  • Abe F. Effect of fine precipitation and subsequent coarsening of Fe2W laves phase on the creep deformation behavior of tempered martensitic 9Cr-W steels. Metallurgical And Materials Transactions A-Physical Metallurgy And Materials Science. 2005;36A(2):321–332. doi: 10.1007/s11661-005-0305-y.