134
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

The recent progress in the design of structural strength and life assessment for aero-engine single crystal turbine blades

Pages 446-457 | Received 29 Dec 2023, Accepted 25 Feb 2024, Published online: 05 Mar 2024

References

  • Zhou RZ. Study on aero core engine technology and engine development spectrum. University of Electronic Science and Technology of China [PhD thesis]. 2007.
  • Zhao YC, Gao HS, Wen ZX, et al. Film cooling of showerhead holes from the twisted leading edge of a gas turbine blade: complex mainstream characteristics and reasonable angle arrangement. Aerosp Sci Technol. 2021;119:119. doi: 10.1016/j.ast.2021.107208
  • MacIsaac B, Langton R, Belobaba P, et al. Gas turbine propulsion systems. John Wiley & Sons; 2011.
  • Shin DH, Kim M, Kim JS, et al. Precise infrared thermometry with considering background radiation for gas turbine air cooling application. Int J Ther Sci. 2020;158:106534. doi: 10.1016/j.ijthermalsci.2020.106534
  • Kim S, Rahman H, Hassan I. Effect of turbine inlet temperature on rotor blade tip leakage flow and heat transfer. Int J Numer Methods Heat Fluid Flow. 2009;22(1):73–93. doi: 10.1108/09615531211188801
  • Eifel M, Caspary V, Honen H, et al. Analysis of internal cooling geometry variations in gas turbine blades. J Therm Sci. 2009;18(4):289–293. doi: 10.1007/s11630-009-0289-9
  • Pagnacco F, Furlani L, Armellini A, et al. Rotating heat transfer measurements on a multi-pass internal cooling channel: II experimental tests. ASME Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers; 2016. vol. 49798, p. V05BT16A004.
  • Chowdhury NHK, Qureshi SA, Zhang M, et al. Influence of turbine blade leading edge shape on film cooling with cylindrical holes. Int J Heat Mass Trans. 2017;115:895–908. doi: 10.1016/j.ijheatmasstransfer.2017.08.020
  • Zhang M, Wang N, Han JC. Overall effectiveness of film-cooled leading edge model with normal and tangential impinging jets. Int J Heat Mass Trans. 2019;139(8):577–587. doi: 10.1016/j.ijheatmasstransfer.2019.05.037
  • Wang X, Xu H, Wang J, et al. High pressure turbine blade internal cooling in a realistic rib roughened two-pass channel. Int J Heat Mass Trans. 2021;170:121019. doi: 10.1016/j.ijheatmasstransfer.2021.121019
  • Wang YG, Liu B, Cao ZP. Mixing process in symmetry trailing edge slot for a turbine blade. J Propul Technol. 2002;23(3; ISSU 123):223–225.
  • Li HW, Han F, Zhou ZY, et al. Experimental investigations of the effects of the injection angle and blowing ratio on the leading-edge film cooling of a rotating twisted turbine blade. Int J Heat & Mass Trans. 2018;127:856–869. doi: 10.1016/j.ijheatmasstransfer.2018.07.133
  • Wright LM, Gao Z, Yang H, et al. Film cooling effectiveness distribution on a gas turbine blade platform with inclined slot leakage and discrete film hole flows. J Heat Transfer. 2008;130(7):71702–71702. doi: 10.1115/1.2907440
  • Gao Z, Narzary DP, Mhetras S, et al. Full-coverage film cooling for a turbine blade with axial-shaped holes. J Thermophys Heat Transfer. 2008;22(1):50–61. doi: 10.2514/1.31206
  • Sperling SJ, Celestina R, Christensen L, et al. Variation of cooling mass flow rate and its effect on unsteady aerodynamic and heat transfer performance of a rotating turbine stage. AIAA Propulsion and Energy 2020 Forum, 2020. p. 3698.
  • Fan X. Numerical research of a new vortex double wall cooling configuration for gas turbine blade leading edge. Int J Heat & Mass Trans. 2022;183:122048. doi: 10.1016/j.ijheatmasstransfer.2021.122048
  • Courtis M, Skamniotis C, Cocks A, et al. Coupled aerothermal-mechanical analysis in single crystal double wall transpiration cooled gas turbine blades with a large film hole density. Appl Therm Eng. 2023; 219:119329. doi:10.2139/ssrn.4102556
  • ASTM Standards. Definition of fatigue test terms and statistical analysis of fatigue data. ASTM E. 206.
  • ASTM Standards. Standard test methods for creep, creep fracture and stress fracture tests of metallic materials. ASTM E. 139–2003.
  • Song ZH. Aircraft gas turbine engine strength design. Beijing: Aeronautical Institute Press; 1988.
  • Editorial committee of high efficiency and energy saving engine collection, ministry of aerospace industry. Energy efficient engines volume 5, turbine design and testing. Aviation Industry Press; 1991.
  • Huang QN. Aero engine design manual volume 10, turbines. Aviation Industry Press; 2001.
  • Li L. Design and optimization of gas turbine cooling blades. Beijing: Science Press; 2018.
  • Yue ZF. Multidisciplinary design optimization of aero engine turbine blades. Beijing: Science Press; 2007.
  • Sun SY, Yue ZF, Li L, et al. Preliminary design of centrifugal compressor using multidisciplinary optimization method. Mech Ind. 2019;20(6):628. doi: 10.1051/meca/2019071
  • Chen X, Li L, Yue ZF. Multi-point sampling algorithm based on vertical distance in kriging surrogate model. J Mech Eng. 2015;51(9):6. doi: 10.3901/JME.2015.09.153
  • Li L, Wan H, Gao WJ, et al. Reliability based multidisciplinary design optimization of cooling turbine blade considering uncertainty data statistics. Struct Multidiscipl Optim. 2018;59(2):659–673. doi: 10.1007/s00158-018-2081-5
  • Li H, Zhang Z, Li L, et al. State variable and optimization potential-based multi-objective optimization method and application in compressor blade airfoil design. Struct Multidiscipl Optim. 2023;66(7). doi: 10.1007/s00158-023-03625-6
  • Han Q, Wang W, Fang J, et al. In-situ SEM and EBSD study on fretting fatigue crack initiation of a directionally solidified Ni-based superalloy. Int J Fatigue. 2022;161:161. doi: 10.1016/j.ijfatigue.2022.106908
  • Song WB, Keane A, Rees J, et al. Turbine blade fir-tree root design optimisation using intelligent CAD and finite element analysis. Comput Struct. 2002;80(24):1853–1867. doi: 10.1016/S0045-7949(02)00225-0
  • Li L, Jiao J, Sun S, et al. Aerodynamic shape optimization of a single turbine stage based on parameterized free-form deformation with mapping design parameters. Energy. 2019;169:444–455. doi: 10.1016/j.energy.2018.12.031
  • Sun L, Zhao G. Adaptive hexahedral mesh generation and quality optimization for solid models with thin features using a grid-based method. Eng Comput-Germany. 2016;32(1):61–84. doi: 10.1007/s00366-015-0399-9
  • Tan CL, Gao HS, Li L, et al. Turbine blade arc tenon/mortise structure and optimization method based on parameterized mesh deformation. Struct Multidiscipl Optim. 2022;65(8). doi: 10.1007/s00158-022-03327-5
  • Yang XH, Chen CY. Fatigue and fracture. Wuhan: Huazhong University of Science and Technology Press; 2018.
  • Zhao SB. Fatigue resistance design manual. Beijing: China Machine Press; 2015.
  • Zhang DX, He JY, Liang JW. Anisotropic creep fracture mechanism and microstructural evolution in nickel-based single crystal specimen with a center film hole. Theor Appl Fract Mech. 2020;108:102680. doi: 10.1016/j.tafmec.2020.102680
  • Wang P, Li M, Wen ZX, et al. High temperature creep property of a novel porous double layer cooling structure for gas turbine blades. Eng Fract Mech. 2023;289:109440. doi: 10.1016/j.engfracmech.2023.109440
  • Swanson GR, Arakere NK. Effect of crystal orientation on analysis of single-crystal nickel-based turbine blade superalloys. NAS 1.60:210074; 2000.
  • Zhao YC, Gao HS, Cheng H, et al. Reliability study on the fatigue life of film cooling blades in advanced aero-engine turbines: neglected crystal orientation uncertainty in casting. Aerosp Sci Technol. 2022;130:107880. doi: 10.1016/j.ast.2022.107880
  • Zhao YC, Gao HS, Wen ZX, et al. Effect of orientation deviation on resonance characteristics of single crystal turbine blades. AIAA Stud J. 2020;58(5):1–9. doi: 10.2514/1.J059214
  • Gu SN, Gao HS, Pei HQ, et al. Degradation of microstructural and mechanical properties with serviced turbine blades. Mater Charact. 2021;182:111582. doi: 10.1016/j.matchar.2021.111582
  • Gu SN, Gao HS, Wen ZX, et al. Creep characteristics of directionally solidified turbine blades based on the difference in original casting characteristics. J Alloys Compd. 2021;884:161055. doi: 10.1016/j.jallcom.2021.161055
  • Stekovic S, Jones JP, Engel B, et al. DevTMF-towards code of practice for thermo-mechanical fatigue crack growth. Int J Fatigue. 2020;138:105675. doi: 10.1016/j.ijfatigue.2020.105675
  • Coffin LF. A study of the effects of cyclic thermal stresses on a ductile metal. Trans Am Soc Mech Eng. 1954;76(6):931–949. doi: 10.1115/1.4015020
  • Li M, Barrett RA, Scully S, et al. Cyclic plasticity of welded P91 material for simple and complex power plant connections. Int J Fatigue. 2016;87:391–404. doi: 10.1016/j.ijfatigue.2016.02.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.