60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Cr on the high-temperature corrosion of dissimilar AISI 904L and Inconel 625 joints employed in the coal-fired thermal power plant tubes

, , ORCID Icon, , &
Pages 372-385 | Received 05 Feb 2023, Accepted 12 Jun 2023, Published online: 11 Mar 2024

References

  • Prabu SS, Muthu SM, Sujai S, et al. Failure assessment and high-temperature corrosion behavior of Inconel 625 welds in simulated K2SO4 + 60% NaCl boiler environment. J Mater Eng Perform. 2023;32(24):11024–11039. doi: https://doi.org/10.1007/s11665-023-07923-4
  • Prabu SS, Ramkumar KD, Arivazhagan N. Effect of filler metals on the mechanical properties of Inconel 625 and AISI 904L dissimilar weldments using gas tungsten arc welding. IOP Conf Ser Mater Sci Eng. 2017;263:062072. doi: 10.1088/1757-899X/263/6/062072
  • Sunny KT, Korra NN, A systematic review about welding of super austenitic stainless steel. Mater Today: Proc, 2021;47: 4378–4381. doi: 10.1016/j.matpr.2021.05.185
  • Dak G, Pandey SM, Pandey C. Residual stress analysis, microstructural characterization, and mechanical properties of tungsten inert gas-welded P92/AISI 304L dissimilar steel joints. Proc Inst Mech Eng L: J Mater Des Appl. 2022;237(4):767–790. doi: 10.1177/14644207221124494
  • Hosseini HS, Shamanian M, Kermanpur A. Microstructural and weldability analysis of Inconel 617/AISI 310 stainless steel dissimilar welds. Int J Press Vessel Pip. 2016;144:18–24. doi: 10.1016/j.ijpvp.2016.05.004
  • Kumar A, Pandey C. Development and evaluation of dissimilar gas tungsten arc-welded joint of P92 steel/Inconel 617 alloy for advanced ultra-supercritical boiler applications. Metall Mater Trans A. 2022;53(9):3245–3273. doi: 10.1007/s11661-022-06723-0
  • Potter A, Sumner J, Simms N. The effects of water vapour on the hot corrosion of gas turbine blade materials at 700°C. Mater High Temp. 2022;39(3):231–238. doi: 10.1080/09603409.2022.2056299
  • Sidhu TS, Prakash S, Aerawal RD. Hot corrosion and performance of nickel-based coatings. Curr Sci. 2006;90:41–47.
  • Eliaz N, Shemesh G, Latanision RM. Hot corrosion in gas turbine components. Eng Fail Anal. 2002;9(1):31–43. doi: 10.1016/S1350-6307(00)00035-2
  • Subhash K, Jayaganthan R, Prakash S. High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900°C. Bull Mater Sci. 2010;33(3):299–306. doi: 10.1007/s12034-010-0046-4
  • Li H, Zhang B, Jiang Z, et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air. J Alloys Compd. 2016;686:326–338. doi: 10.1016/j.jallcom.2016.06.023
  • Zhang S, Li H, Jiang Z, et al. Chloride-and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment. Corros Sci. 2020;163:108295. doi: 10.1016/j.corsci.2019.108295
  • Amra M, Alavi Zaree SR, Dehmolaei R. Dissimilar welding between 1.4742 ferritic and 310S austenitic stainless steels: assessment of oxidation behaviour. Met Mater Int. 2021;27(5):931–945. doi: 10.1007/s12540-019-00485-y
  • Prabu SS, Choudhary A, Mittal N, et al. Failure evaluation of SA 210C riffle water wall tubes in 70MW CFBC boiler. Eng Fail Anal. 2019;95:239–247. doi: 10.1016/j.engfailanal.2018.09.028
  • Ramkumar KD, Arivazhagan N, Narayanan S. Effect of filler materials on the performance of gas tungsten arc welded AISI 304 and Monel 400. Mater Des. 2012;40:70–79. doi: 10.1016/j.matdes.2012.03.024
  • Muthu SM, Arivazhagan N, Rao MN, et al. Oxidation and hot corrosion behaviour of Ni-based superalloy 825 and AISI 321 dissimilar laser weldment in K2SO4–60%NaCl molten salt environment at 650°C. Phys Met Metallogr. 2022;123(13):1–11. doi: 10.1134/S0031918X21100525
  • Dudziak T, Rząd E, Golański G, et al. Paper: effect of aging process on steam oxidation behaviour of austenitic steels super 304H and HR3C. Int J Press Vessel Pip. 2021;191:104344. doi: 10.1016/j.ijpvp.2021.104344
  • Anant R, Dahiya JP, Agrawal BP, et al. SMA, GTA and P-GMA dissimilar weld joints of 304LN stainless steel to HSLA steel; part-2: hot corrosion kinetics. Mater Res Express. 2018;5(9):096503. doi: 10.1088/2053-1591/aad3fd
  • Muthu SM, Senthur Prabu S, Sujai S, et al. Oxide scale formation and damage mechanism of the alloy 625 weldments in air and simulated boiler environment under cyclic condition. Mater Lett. 2023;346:134543. doi: 10.1016/j.matlet.2023.134543
  • Kumar S, Satapathy B, Pradhan D, et al. Effect of surface modification on the hot corrosion resistance of Inconel 718 at 700°C. Mater Res Express. 2019;6(8):086549. doi: 10.1088/2053-1591/ab1dc7
  • Sunny KT, Korra NN, Muthukumaran V, et al. Corrosion studies and thermogravimetric analysis performed on activated tungsten inert gas and hot wire tungsten inert gas welded super austenitic stainless steel AISI 904L. Proc Inst Mech Eng C: J Mech Eng Sci. 2022;236(20):10528–10540. doi: 10.1177/09544062221106120
  • Mahajan S, Chhibber R. High temperature molten salt corrosion investigations on P22/P91 power plant dissimilar welds. Proc Inst Mech Eng E J Process Mech Eng. 2021;235(2):440–451. doi: 10.1177/0954408920966304
  • Wang JH, Li DG, Shao TM. Electrochemical study on the hot corrosion behavior of Ni16Cr13Co4Mo alloy in molten NaCl-KCl and NaCl-KCl-Na2SO4. Corros Sci. 2022;200:110247. doi: 10.1016/j.corsci.2022.110247
  • Li L, Lu J, Liu X, et al. AlxCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4+ 25% NaCl at 900° C. Corros Sci. 2021;187:109479. doi: 10.1016/j.corsci.2021.109479
  • Mannava V, SambasivaRao A, Kamaraj M, et al. Influence of two different salt mixture combinations of Na2SO4-NaCl-NaVO3 on hot corrosion behavior of Ni-base superalloy Nimonic263 at 800°C. J Mater Eng Perform. 2019;28(2):1077–1093. doi: 10.1007/s11665-019-3866-4
  • Shi X, Li B, Liu H, et al. The corrosion resistance mechanisms of the Cr-coated SiC in molten Na2SO4 salt: strengthened boundaries and protective scales. Corros Sci. 2021;185:109421. doi: 10.1016/j.corsci.2021.109421
  • Shi M, Xue Z, Liang H, et al. High velocity oxygen fuel sprayed Cr3C2-NiCr coatings against Na2SO4 hot corrosion at different temperatures. Ceram Int. 2020;46(15):23629–23635. doi: 10.1016/j.ceramint.2020.06.135

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.