50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal impact on superplasticizer-free metakaolin-nano-silica binary and ternary mortars

, , , &
Pages 409-423 | Received 20 Oct 2023, Accepted 07 Mar 2024, Published online: 14 Mar 2024

References

  • Shafiq N, Kumar R, Zahid M, et al. Effects of modified metakaolin using nano-silica on the mechanical properties and durability of concrete. Materials. 2019;12(14):1–22. doi: 10.3390/ma12142291
  • Claude G. Precast Inc. (A Closer Look: Fly Ash, Slag Cement & Metakaolin). Carmel, IN: National Precast Concrete Association; 2020. https://precast.org/wp-content/uploads/092823_magazine_Inc-Jan-Feb-2020.pdf
  • Kosmatka SH, Kerkhoff B, Panarese WC. Design and control of concrete mixtures. Skokie, Illinois, USA: Portland Cement Association; 2008.
  • Tufail M, Shahzada K, Gencturk B, et al. Effect of elevated temperature on Mechanical Properties of Limestone, quartzite and granite concrete. Int J Concr Struct Mater. 2017;11(1):17–28. Korea Concrete Institute. doi: 10.1007/s40069-016-0175-2
  • Chen GM, He YH, Yang H, et al. Compressive Behavior of Steel Fiber Reinforced Recycled Aggregate Concrete after exposure to elevated temperatures. Constr Build Mater. 2014;71:1–15. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2014.08.012
  • Cree D, Green M, Noumowé A. Residual strength of concrete containing recycled materials after exposure to fire: a review. Constr Build Mater. 2013;45:208–223. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2013.04.005
  • Benli A, Karatas M, Anil Toprak H. Mechanical characteristics of self-compacting mortars with raw and expanded vermiculite as partial cement replacement at elevated temperatures. Constr Build Mater. 2020;239:117895. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2019.117895
  • Kodur V. Properties of Concrete at Elevated Temperatures. ISRN Civil Engineering. 2014;2014:468510. doi: 10.1155/2014/468510
  • Karakurt C, Topu LB. Effect of blended cements with natural zeolite and industrial by-products on rebar corrosion and high temperature resistance of concrete. Constr Build Mater. 2012;35:906–911. doi: 10.1016/j.conbuildmat.2012.04.045
  • Lublóy É. Heat resistance of Portland cements. J Therm Anal Calorim. 2018;132(3):1449–1457. Springer Netherlands. doi: 10.1007/s10973-018-7132-z
  • Mendes A, Sanjayan J, Collins F. 2008. “Phase transformations and mechanical strength of OPC/Slag pastes submitted to high temperatures.” Mater And Struct/Materiaux Et Constructions, 41 (2): 345–350. doi: 10.1617/s11527-007-9247-8
  • Xu Y, Wong YL, Poon CS, et al. Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures. Cem Concr Res. 2003;33(12):2009–2016. doi: 10.1016/S0008-8846(03)00216-3
  • Arslan F, Benli A, Karatas M. Effect of high temperature on the performance of self-compacting mortars produced with calcined kaolin and metakaolin. Constr Build Mater. 2020;256:119497. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2020.119497
  • Fadiel AAM, Abu-Lebdeh T, Munteanu IS, et al. Mechanical properties of rubberized concrete at elevated temperatures. J Composites Sci. 2023;7(7):283. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/jcs7070283
  • Hager I. Behaviour of cement concrete at high temperature. Bull Pol Acad Sci Tech Sci. 2013;61(1):145–154. doi: 10.2478/bpasts-2013-0013
  • Horszczaruk E, Sikora P, Cendrowski K, et al. The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates. Constr Build Mater. 2017;137:420–431. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2017.02.003
  • Khan M, Cao M, Chaopeng X, et al. Experimental and analytical study of hybrid fiber reinforced concrete prepared with basalt fiber under high temperature. Fire Mater. 2022;46(1):205–226. John Wiley and Sons Ltd. doi: 10.1002/fam.2968
  • Nadeem A, Memon SA, Lo TY. The performance of fly ash and Metakaolin concrete at elevated temperatures. Constr Build Mater. 2014;62:67–76. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2014.02.073.
  • Nayel IH, Nasr MS, Abdulridha SQ. Impact of elevated temperature on the mechanical properties of cement mortar reinforced with rope waste fibres. IOP Conf Ser Mater Sci Eng. 2020a;671(1):012080. Institute of Physics Publishing. doi: 10.1088/1757-899X/671/1/012080
  • Piasta J, Sawicz Z, Rudzinski L. 1984. Changes in the structure of hardened cement paste due to high temperature. Matériaux et Constructions 17(4) 291–296. doi: 10.1007/BF02479085
  • IS: 650 1991. Standard Sand for Testing Cement (Second Revision). New Delhi: Bureau of Indian Standards; 1991.
  • IS: 4031 (Part 4). Methods of physical tests for hydraulic cement. Part IV- Determination of consistency of standard cement paste. New Delhi: Bureau of Indian Standards; 1988.
  • IS: 4031 (Part 6). Methods Of Physical Tests For Hydraulic Cement Part 6 Determination Of Compressive Strength Of Hydraulic Cement Other Than Masonry Cement (First Revision). New Delhi: Bureau of Indian Standards; 2005.
  • Gencel O, Benli A, Yavuz Bayraktar O, et al. Effect of Waste Marble Powder and rice husk ash on the microstructural, physico-mechanical and Transport Properties of Foam Concretes exposed to high temperatures and freeze–thaw cycles. Constr Build Mater. 2021;291:123374. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2021.123374.
  • Karatas M, Benli A, Arslan F. The effects of kaolin and Calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures. Constr Build Mater. 2020;265:120300. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2020.120300.
  • Bu Y, Du J, Guo S, et al. Properties of oil well cement with high dosage of metakaolin. Constr Build Mater. 2016;112:39–48. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2016.02.173
  • Morsy MS, Al-Salloum YA, Abbas H, et al. Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures. Constr Build Mater. 2012;35:900–905. doi: 10.1016/j.conbuildmat.2012.04.099
  • Poon C-S, Azhar S, Anson M, et al. Performance of metakaolin concrete at elevated temperatures. Cem Concr Compos. 2003;25(1):83–89
  • Ergün A, Kürklü G, Serhat Başpnar M, et al. The effect of cement dosage on mechanical properties of concrete exposed to high temperatures. Fire Saf J. 2013;55:160–167. doi: 10.1016/j.firesaf.2012.10.016
  • Uysal M, Tanyildizi H. Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr Build Mater. 2012;27(1):404–414. doi: 10.1016/j.conbuildmat.2011.07.028
  • Yonggui W, Shuaipeng L, Hughes P, et al. Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures. Constr Build Mater. 2020;247:118561. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2020.118561
  • Heikal M 2000. “Effect of temperature on the physico-mechanical and mineralogical properties of homra pozzolanic cement pastes.” Cem Concr Res, 30: 1835–1839. 11. doi: 10.1016/S0008-8846(00)00403-8
  • Bekem Kara I 2019. “The effect of nanosilica o nthe properties of cement mortars containing microsilica at elevated temperatures.” Romanian J Materials, 49 (4): 518–526.
  • Heikal M, Ali AI, Ismail MN, et al. Behavior of composite cement pastes containing silica nano-particles at elevated temperature. Constr Build Mater. 2014;70:339–350. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2014.07.078
  • Abdelaleem S, Heikal M, Morsi WM. Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Constr Build Mater. 2014;59:151–160. Elsevier Ltd. doi: 10.1016/j.conbuildmat.2014.02.039
  • Hou P, Kawashima S, Kong D, et al. Modification effects of colloidal nanoSio2 on cement hydration and its gel property. Compos B Eng. 2013;45(1):440–448. doi: 10.1016/j.compositesb.2012.05.056
  • Said AM, Zeidan MS, Bassuoni MT, et al. Properties of concrete incorporating nano-silica. Constr Build Mater. 2012;36:838–844. doi: 10.1016/j.conbuildmat.2012.06.044
  • Abdelmelek N, Lubloy E. The impact of metakaolin, silica fume and fly ash on the temperature resistance of high strength cement paste. J Therm Anal Calorim. 2022;147(4):2895–2906. Springer Science and Business Media B.V. doi: 10.1007/s10973-021-10700-x
  • Ichikawa Y, England GL. Prediction of moisture migration and pore pressure build-up in concrete at high temperatures. Nucl Eng Des. 2004;228(1–3):245–259. Elsevier BV. doi: 10.1016/j.nucengdes.2003.06.011
  • Kalifa P, Menneteau Ë-D, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cement Concr Res. 200030(12):1915–1927. doi: 10.1016/S0008-8846(00)00384-7
  • Liu X, Ye G, De Schutter G, et al. On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste. Cem Concr Res. 2008;38(4):487–499. doi: 10.1016/j.cemconres.2007.11.010
  • Kanéma M, Pliya P, Noumowé A, et al. Spalling, thermal, and hydrous behavior of ordinary and high-strength concrete subjected to elevated temperature. J Mater Civ Eng. 2011;23(7):921–930. American Society of Civil Engineers. doi: 10.1061/(asce)mt.1943-5533.0000272
  • Koksal F, Nazlı T, Benli A, et al. The effects of cement type and expanded vermiculite powder on the thermo- mechanical characteristics and durability of lightweight mortars at high temperature and RSM modelling. Case Stud Constr Mater. 2021;15:e00709. Elsevier Ltd. doi: 10.1016/j.cscm.2021.e00709
  • Noumowe AN. Clastres P. Debickp G, et al. Nuclear engineering and design transient heating effect on high strength concrete. Nucl Eng Des. 1996; 166 (1) :99–108. doi:10.1016/0029-5493(96)01235-6.
  • Noumowe AN, Siddique R. Debicki G, Permeability of high-performance concrete subjected to elevated temperature (600 °C). Constr Build Mater. 2009;23(5):1855–1861. doi: 10.1016/j.conbuildmat.2008.09.023
  • Bazant PZ, Cusati G. “Creep, shrinkage and durability of concrete and concrete structures CONCREEP 7.” In: Creep, shrinkage and durability of concrete and concrete structures, Pijaudier-Cabot G, Gerard B Acker P, editors. Nantes: Hermes Science Publishing, 2005. p. 449–460.
  • Boström L, and Jansson R. The age effect on fire spalling of concrete. In Proceedings of the 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure; 2011 Oct 5-7; Delft, The Netherlands; 2011.
  • Mindeguia J-C, Contribution expérimentale à la compréhension des risques d’instabilité thermique des bétons RECYFEU View project water content measurement at local scale View project [Thesis]. The University of Pau and the Adour Region; 2009.
  • Koksal F, Tugce Kocabeyoglu E, Gencel O, et al. The effects of high temperature and cooling regimes on the mechanical and durability properties of basalt fiber reinforced mortars with silica fume. Cem Concr Compos. 2021;121:121. Elsevier Ltd. doi: 10.1016/j.cemconcomp.2021.104107
  • Rashad AM, Sadek DM, Hassan HA. An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. J Clean Prod. 2016;112:1086–1096. Elsevier Ltd. doi: 10.1016/j.jclepro.2015.07.127
  • Tantawy MA. Effect of high temperatures on the microstructure of cement paste. J Mater Sci Chem Eng. 2017;5(11):33–48. Scientific Research Publishing, Inc. doi: 10.4236/msce.2017.511004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.