211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Constitutive model of an additively manufactured combustor material at high-temperature load conditions

, , , , & ORCID Icon
Pages 424-445 | Received 16 Jun 2023, Accepted 23 Mar 2024, Published online: 03 Apr 2024

References

  • Andersson O, Graichen A, Brodin H, et al. Developing additive manufacturing technology for Burner repair. J Eng Gas Turbine Power. 2016;139(3):031506. doi: 10.1115/1.4034235
  • Navrotsky V. Industrialization and current field experience of 3d printed gas turbine components. POWER-GEN Asia 2018; Jakarta (Indonesia). 2018. p. 365.
  • Shi J, Zhou S, Chen H, et al. Microstructure and creep anisotropy of inconel 718 alloy processed by selective laser melting. Mater Sci Eng A. 2021 Feb;805:140583. doi: 10.1016/j.msea.2020.140583
  • Yin Y, Zhang J, Gao J, et al. Laser powder bed fusion of ni-based hastelloy x superalloy: microstructure, anisotropic mechanical properties and strengthening mechanisms. Mater Sci Eng A. 2021 Oct;827:142076. doi: 10.1016/j.msea.2021.142076
  • Jirandehi AP, Hajshirmohammadi B, Carrion P, et al. Strain energy-based fatigue failure analyses of LB-PBF inconel 718: effect of build orientation. Additive Manuf. 2022 Apr;52:102661. doi: 10.1016/j.addma.2022.102661
  • Somlo K, Frodal B, Funch C, et al. Anisotropic yield surfaces of additively manufactured metals simulated with crystal plasticity. Eur J Mech A Solids. 2022 Jul;94:104506. doi: 10.1016/j.euromechsol.2022.104506
  • Lindström T, Nilsson D, Simonsson K, et al. Constitutive model for thermomechanical fatigue conditions of an additively manufactured combustor alloy. Mech Mater. 2022 May;168:104273. doi: 10.1016/j.mechmat.2022.104273
  • Wu S, Song H, Peng H, et al. A microstructure-based creep model for additively manufactured nickel-based superalloys. Acta Materialia. 2022 Feb;224:117528. doi: 10.1016/j.actamat.2021.117528
  • Bronkhorst C, Mayeur J, Livescu V, et al. Structural representation of additively manufactured 316L austenitic stainless steel. Int J Plast. 2019;118:70–86. doi: 10.1016/j.ijplas.2019.01.012
  • He Y, Ma Y, Zhang W, et al. Effects of build direction on thermal exposure and creep performance of SLM ti6al4v titanium alloy. Eng Fail Anal. 2022 May;135:106063. doi: 10.1016/j.engfailanal.2022.106063
  • Mooney B, Agius D, Kourousis KI. Cyclic plasticity of the as-built EOS maraging steel: preliminary experimental and computational results. Appl Sci. 2020;10(4):1232. doi: 10.3390/app10041232
  • Jin S, Sun J, Yuan H. Anisotropic cyclic plasticity modeling for additively manufactured nickel-based superalloys. Fatigue Fract Eng Mater Struct. 2022 Jun;45(8):2371–2387. doi: 10.1111/ffe.13752
  • Ahmed R, Hassan T. Constitutive modeling for thermo-mechanical low-cycle fatigue-creep stress–strain responses of haynes 230. Int J Solids Struct. 2017;126-127:122–139. doi: 10.1016/j.ijsolstr.2017.07.031
  • Ohno N, Yamamoto R, Okumura D. Thermo-mechanical cyclic hardening behavior of 304 stainless steel at large temperature ranges: experiments and simulations. Int J Mech Sci. 2018;146-147:517–526. doi: 10.1016/j.ijmecsci.2017.06.018
  • Shenoy M, McDowell D, Neu R. Transversely isotropic viscoplasticity model for a directionally solidified Ni-base superalloy. Int J Plast. 2006;22(12):2301–2326. doi: 10.1016/j.ijplas.2006.03.003
  • Hu XA, Yang XG, Shi DQ, et al. Constitutive modeling of a directionally solidified nickel-based superalloy DZ125 subjected to thermal mechanical creep fatigue loadings. Rare Met. 2016;38(10):922–936. doi: 10.1007/s12598-016-0713-8
  • Jiang Y. A fatigue criterion for general multiaxial loading. Fatigue Fract Eng Mater Struct. 2000;23(1):19–32. doi: 10.1046/j.1460-2695.2000.00247.x
  • Coffin LJ. A study of the effects of the cyclic thermal stresses on a ductile metal. Transactions of The AMSE. 1954 76;76(6):931–949. doi: 10.1115/1.4015020
  • Manson S. 1953. Behavior of materials under conditions of thermal stress. National Advisory Committee For Aeronautics NACA TN-2933.
  • Hasselqvist M. TMF crack initiation lifing of austenitic carbide precipitating alloys. In Proc. ASME. GT2004. Turbo Expo 2004. American Society of Mechanical Engineers; 2004. Vol. 4. p. 875–883. doi: 10.1115/GT2004-54333
  • Oh YJ, Yang WJ, Jung JG, et al. Thermomechanical fatigue behavior and lifetime prediction of niobium-bearing ferritic stainless steels. Int J Fatigue. 2012 Jul;40:36–42. doi: 10.1016/j.ijfatigue.2012.01.013
  • Nagesha A, Valsan M, Kannan R, et al. Thermomechanical fatigue evaluation and life prediction of 316l(n) stainless steel. Int J Fatigue. 2009 Apr;31(4):636–643.
  • Mücke R, Woratat P. A cyclic life prediction approach for directionally solidified nickel superalloys. J Eng Gas Turbine Power. 2010;132(5):052401. doi: 10.1115/1.3205027
  • Leidermark D, Simonsson K. Procedures for handling computationally heavy cyclic load cases with application to a disc alloy material. Mater High Temp. 2019;36(5):447–458. doi: 10.1080/09603409.2019.1631587
  • Lindström T, Ewest D, Simonsson K, et al. Constitutive model of an additively manufactured ductile nickel-based superalloy undergoing cyclic plasticity. Int J Plast. 2020;132:102752. doi: 10.1016/j.ijplas.2020.102752
  • Hasselqvist M. Aspects of creep-fatigue in gas turbine hot parts [ dissertation]. Linköping University; 2001.
  • Keshavarzkermani A, Esmaeilizadeh R, Ali U, et al. Controlling mechanical properties of additively manufactured hastelloy X by altering solidification pattern during laser powder-bed fusion. Mater Sci Eng A. 2019;762:138081. doi: 10.1016/j.msea.2019.138081
  • Banoth S, Palleda TN, Saito T, et al. Effects of yttrium and silicon contents in hastelloy-x built by selective laser melting process. J Alloys Compd. 2022 Mar;896:163050. doi: 10.1016/j.jallcom.2021.163050
  • Tomus D, Tian Y, Rometsch P, et al. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of hastelloy-x parts produced by selective laser melting. Mater Sci Eng A. 2016;667:42–53. https://www.sciencedirect.com/science/article/pii/S0921509316304804 Available from
  • Pilgar C, Fernandez A, Lucarini S, et al. Effect of printing direction and thickness on the mechanical behavior of slm fabricated hastelloy-x. Int J Plast. 2022;153:103250. https://www.sciencedirect.com/science/article/pii/S0749641922000353 Available from
  • Brodin H, Andersson O, Johansson S. Mechanical behaviour and microstructure correlation in a selective laser melted superalloy. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. ASME; 2013. Doi: 10.1115/gt2013-95878.
  • Lindström T, Calmunger M, Eriksson R, et al. Fatigue behaviour of an additively manufactured ductile gas turbine superalloy. Theor Appl Fract Mech. 2020;108:102604. doi: 10.1016/j.tafmec.2020.102604
  • International Organization for Standardization (ISO). Metallic materials - uniaxial creep testing in tension - method of test. ISO; 204:2018. 2018.
  • Yu CH, Peng RL, Lee TL, et al. Anisotropic behaviours of LPBF hastelloy x under slow strain rate tensile testing at elevated temperature. Mater Sci Eng A. 2022 Jun;844:143174. doi: 10.1016/j.msea.2022.143174
  • Sakthivel T, Laha K, Nandagopal M, et al. Effect of temperature and strain rate on serrated flow behaviour of hastelloy x. Mater Sci Eng A. 2012 Feb;534:580–587. doi: 10.1016/j.msea.2011.12.011
  • Rowlands B, Rae C, Galindo-Nava E. The portevin-le chatelier effect in nickel-base superalloys: origins, consequences and comparison to strain ageing in other alloy systems. Pro Mater Sci. 2023;132:101038. https://www.sciencedirect.com/science/article/pii/S0079642522001190
  • Moverare JJ, Johansson S, Reed RC. Deformation and damage mechanisms during thermal–mechanical fatigue of a single-crystal superalloy. Acta Materialia. 2009;57(7):2266–2276. doi: 10.1016/j.actamat.2009.01.027
  • Almroth P, Hasselqvist M, Simonsson K, et al. Viscoplastic–plastic modelling of IN792. Comput Mater Sci. 2004;29(4):437–445. doi: 10.1016/j.commatsci.2003.12.002
  • Becker M, Hackenberg HP. A constitutive model for rate dependent and rate independent inelasticity. application to IN718. Int J Plast. 2011;27(4):596–619. doi: 10.1016/j.ijplas.2010.08.005
  • White PS. An investigation of the anisotropy of the secondary creep rate in CMSX-4. Materials for Advanced Power Engineering 1998, Proceedings of the 6th Liège Conference, Part II. Universite de Liege; 1998;5:1059–1068.
  • Ohno N, Wang JD. Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior. Int J Plast. 1993;9(3):375–390. doi: 10.1016/0749-6419(93)90042-O
  • Chaboche J. A review of some plasticity and viscoplasticity constitutive theories. Int J Plast. 2008;24(10):1642–1693. doi: 10.1016/j.ijplas.2008.03.009
  • Ohno N, Wang JD. Kinematic hardening rules with critical state of dynamic recovery, part II: application to experiments of ratchetting behavior. Int J Plast. 1993;9(3):391–403. doi: 10.1016/0749-6419(93)90043-P
  • Montero-Sistiaga ML, Liu Z, Bautmans L, et al. Effect of temperature on the microstructure and tensile properties of micro-crack free hastelloy x produced by selective laser melting. Additive Manuf. 2020 Jan;31:100995. doi: 10.1016/j.addma.2019.100995
  • Cheng X, Du Z, Chu S, et al. The effect of subsequent heating treatment on the microstructure and mechanical properties of additive manufactured hastelloy x alloy. Mater Charact. 2022 Apr;186:111799. doi: 10.1016/j.matchar.2022.111799
  • Saarim/”aki J, Lundberg M, Moverare J, et al. 3d residual stresses in selective laser melted hastelloy x. In: Residual Stresses 2016: ICRS-10. Materials Research Proceedings; 2016; Vol. 2: p. 73–78. Doi: 10.21741/9781945291173-13.
  • Pant P, Proper S, Luzin V, et al. Mapping of residual stresses in as-built inconel 718 fabricated by laser powder bed fusion: a neutron diffraction study of build orientation influence on residual stresses. Additive Manuf. 2020;36:101501. https://www.sciencedirect.com/science/article/pii/S2214860420308733 Available from
  • ABAQUS. 6.12 documentation. Providence, Rhode Island, USA; 2014.
  • Leidermark D, Segersäll M. Modelling of thermomechanical fatigue stress relaxation in a single-crystal nickel-base superalloy. Comput Mater Sci. 2014;90:61–70. doi: 10.1016/j.commatsci.2014.04.009
  • Lindström T, Nilsson D, Simonsson K, et al. Accounting for anisotropic, anisothermal, and inelastic effects in crack initiation lifing of additively manufactured components. Fatigue Fract Eng Mater Struct. 2023 Nov;46(2):396–415.
  • Chaboche JL, Gaubert A, Kanouté P, et al. Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging. Int J Plast. 2013;46:1–22. doi: 10.1016/j.ijplas.2012.09.011
  • McDowell DL. A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity. Int J Plast. 1992;8(6):695–728. doi: 10.1016/0749-6419(92)90024-7
  • Mücke R, Bernhardi OE. On temperature rate terms for viscoplastic constitutive models with applications to high temperature materials. Comput Methods Appl Mech Eng. 2006;195(19–22):2411–2431. doi: 10.1016/j.cma.2005.05.021