1,810
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Quantifying patient experiences with therapeutic neurorehabilitation technologies: a scoping review

, , ORCID Icon & ORCID Icon
Pages 1662-1672 | Received 02 Dec 2022, Accepted 06 Apr 2023, Published online: 03 May 2023

References

  • Global Burden of Disease Neurology Collaborators Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18:459–480.
  • Playford D, Nair KPS. An introduction to neurological rehabilitation. In: Panicker JN, Nair KPS, González-Fernández M, editors. Neurorehabilitation therapy and therapeutics. Cambridge: Cambridge University Press; 2018. p 1–9.
  • Carroll WM. The global burden of neurological disorders. Lancet Neurol. 2019;18(5):418–419.
  • Sainburg RL, Mutha PK. Movement neuroscience foundations of neurorehabilitation. In: Reinkensmeyer DJ, Dietz V, editors. Neurorehabilitation technology. Cham: Springer International Publishing; 2016. p. 19–38.
  • Molinari M, Esquenazi A, Anastasi AA, et al. Rehabilitation technologies application in stroke and traumatic brain injury patients. In: Pons JL, Raya R, González J, editors. Emerging therapies in neurorehabilitation II. Cham: Springer International Publishing; 2016. p 29–64.
  • Marin-Pardo O, Laine CM, Rennie M, et al. A virtual reality Muscle-Computer interface for neurorehabilitation in chronic stroke: a pilot study. Sensors. 2020;20(13):3754.
  • Cho KH, Kim MK, Lee H-J, et al. Virtual reality training with cognitive load improves walking function in chronic stroke patients. Tohoku J Exp Med. 2015;236(4):273–280.
  • Esquenazi A, Lee S, Packel AT, et al. A randomized comparative study of manually assisted versus robotic-assisted body weight supported treadmill training in persons with a traumatic brain injury. Pm R. 2013;5(4):280–290.
  • Luft A, Bastian AJ, Dietz V. Learning in the damaged brain/spinal cord: neuroplasticity. In: reinkensmeyer DJ, Dietz V, editors. Neurorehabilitation technology. Cham: Springer International Publishing; 2016. p 3–17.
  • Enemark Larsen A, Rasmussen B, Christensen JR. Enhancing a Client-Centred practice with the Canadian occupational performance measure. Occup Ther Int. 2018;2018:5956301.
  • Gil-Gomez J-A, Manzano-Hernandez P, Albiol-Perez S, et al. USEQ: a short questionnaire for satisfaction evaluation of virtual rehabilitation systems. Sensors. 2017;17(7):1589.
  • Monardo G, Pavese C, Giorgi I, et al. Evaluation of patient motivation and satisfaction during Technology-Assisted rehabilitation: an experiential review. Games Health J. 2021;10(1):13–27.
  • Peters MDJ, Godfrey CM, Khalil H, et al. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015;13(3):141–146.
  • Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–473.
  • Aguilera-Rubio A, Cuesta-Gomez A, Mallo-Lopez A, et al. Feasibility and efficacy of a virtual reality Game-Based upper extremity motor function rehabilitation therapy in patients with chronic stroke: a pilot study. IJERPH. 2022;19(6):3381.
  • Almenara M, Cempini M, Gomez C, et al. Usability test of a hand exoskeleton for activities of daily living: an example of user-centered design. Disabil Rehabil. 2017;12(1):84–96.
  • Choi Y-H, Ku J, Lim H, et al. Mobile game-based virtual reality rehabilitation program for upper limb dysfunction after ischemic stroke. Restor Neurol Neurosci. 2016;34(3):455–463.
  • Jyrakoski T, Merilampi S, Puustinen J, et al. Over-ground robotic lower limb exoskeleton in neurological gait rehabilitation: user experiences and effects on walking ability. TAD. 2021;33(1):53–63.
  • Lee KW, Kim SB, Lee JH, et al. Effect of robot-assisted game training on upper extremity function in stroke patients. Ann Rehabil Med. 2017;41(4):539–546.
  • Lee M, Son J, Kim J, et al. Comparison of individualized virtual reality- and group-based rehabilitation in older adults with chronic stroke in community settings: a pilot randomized controlled trial. Europ J Integr Med. 2016;8(5):738–746.
  • Lee SH, Jung H-Y, Yun SJ, et al. Upper extremity rehabilitation using fully immersive virtual reality games with a head mount display: a feasibility study. Pm R. 2020;12(3):257–262.
  • Piron L, Turolla A, Tonin P, et al. Satisfaction with care in post-stroke patients undergoing a telerehabilitation programme at home. J Telemed Telecare. 2008;14(5):257–260.
  • Seo NJ, Arun Kumar J, Hur P, et al. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games. J Rehabil Res Dev. 2016;53(3):321–334.
  • Swank C, Sikka S, Driver S, et al. Feasibility of integrating robotic exoskeleton gait training in inpatient rehabilitation. Disabil Rehabil. 2020;15:409–417.
  • La Rosa G, Adans-Dester C, Fabara E, et al. A novel End-Effector system to enable Pro-Supination movements during Robot-Assisted Upper-Limb training. Arch Phys Med Rehabil. 2019;100(12):e165. others
  • Kikuchi T, Nagata T, Sato C, et al. Sensibility assessment for user interface and training program of an Upper-Limb rehabilitation robot, D-SEMUL. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:3028–3031.
  • Bovolenta F, Goldoni M, Clerici P, et al. Robot therapy for functional recovery of the upper limbs: a pilot study on patients after stroke. J Rehabil Med. 2009;41(12):971–975.
  • Bovolenta F, Sale P, Dall’Armi V, et al. Robot-aided therapy for upper limbs in patients with stroke-related lesions. Brief report of a clinical experience. J Neuroeng Rehab. 2011;8:18.
  • Busching I, Sehle A, Sturner J, et al. Using an upper extremity exoskeleton for semi-autonomous exercise during inpatient neurological rehabilitation- a pilot study. J Neuroeng Rehab. 2018;15(1):72.
  • Huber SK, Held JPO, de Bruin ED, et al. Personalized motor-cognitive exergame training in chronic stroke patients-A feasibility study. Front Aging Neurosci. 2021;13:13.
  • Palma E, Rossini L, Del Percio C, et al. Others. Robot-aided therapy for upper limbs in patient with chronic stroke-related lesions. Brief report of a clinical experience. Clin Neurophysiol. 2011;122: s 177.
  • Brunner I, Skouen JS, Hofstad H, et al. Virtual reality training for upper extremity in subacute stroke (VIRTUES): study protocol for a randomized controlled multicenter trial. BMC Neurol. 2014;14(1):186.
  • Kang YJ, Ku J, Han K, et al. Development and clinical trial of virtual reality-based cognitive assessment in people with stroke: preliminary study. Cyberpsychol Behav. 2008;11(3):329–339.
  • Kim J, Lee M, Kim Y, et al. Feasibility of an individually tailored virtual reality program for improving upper motor functions and activities of daily living in chronic stroke survivors: a case series. Europ J Integr Med. 2016;8(5):731–737.
  • Parikh A, Legault C, Flavin K, et al. Neofect glove: virtual reality device for home therapy in stroke survivors. Neurology. 2018; 90(15 Supplement):P5.007.
  • Riggs A, Patel V, Paneri B, et al. At-Home transcranial direct current stimulation (tDCS) with telehealth support for symptom control in Chronically-Ill patients with multiple symptoms. Front Behav Neurosci. 2018;12:93.
  • Treger I, Faran S, Ring H. Robot-assisted therapy for neuromuscular training of Sub-acute stroke patients. A Feasibility Study. Europ J Phys Rehabil Med. 2008;44:431–435.
  • Turchetti G, Mazzoleni S, Dario P, et al. The impact of robotic technology on neuro-rehabilitation: preliminary results on acceptability and effectiveness. Value Health. 2015;18(7):A363–A364.
  • Gunn M, Shank TM, Eppes M, et al. User evaluation of a dynamic arm orthosis for people with neuromuscular disorders. IEEE Trans Neural Syst Rehabil Eng. 2016;24(12):1277–1283.
  • Li W, Lam-Damji S, Chau T, et al. The development of a home-based virtual reality therapy system to promote upper extremity movement for children with hemiplegic cerebral palsy. TAD. 2009;21(3):107–113.
  • Ling L, Xiang C, Zhiyuan L, et al. Development of an EMG-ACC-Based upper limb rehabilitation training system. IEEE Transac Neural Syst Rehabil Engineer. 2017;25:244–253.
  • Winkels DG, Kottink AI, Temmink RA, et al. Wii™-habilitation of upper extremity function in children with cerebral palsy. An explorative study. Dev Neurorehabil. 2013;16(1):44–51.
  • Al-Amri M. A virtual reality based gait rehabilitation system for children with cerebral palsy. Dissertation Abstracts International: section B: the Sciences and Engineering. 2020.
  • Altun GP, Acar G. Effects of virtual reality games on upper extremity functions in children with cerebral palsy. Fizyoterapi Rehabilitasyon. 2015;26:24–P5.
  • Chrif F, van Hedel HJA, Vivian M, et al. Usability evaluation of an interactive leg press training robot for children with neuromuscular impairments. THC. 2022;30(5):1183–1197.
  • Caceres FJ, Saladino ML, Scaffa ME, et al. Neuro rehabilitation effectiveness based on virtual reality and tele rehabilitation in patients with multiple sclerosis in Argentina: ‘Reavitelem’ Study. Multiple Scler J. 2019;25:352–353.
  • Vanbeylen A, Kos D, Meurrens T, et al. Use of virtual reality glasses during physical therapy in pwMS: a feasibility study. Mult Scler J. 2021;27:15–16.
  • Antoine V, Sarah D, Maelle C, et al. The expectations and experience of PwMS after walking with the EksoGT. Mult Scler J. 2020;26:61.
  • Khalil H, Al-Sharman A, El-Salem K, et al. The development and pilot evaluation of virtual reality balance scenarios in people with multiple sclerosis (MS): a feasibility study. NeuroRehabilitation. 2018;43(4):473–482.
  • Shaw M, Palmeri M, Ladensack D, et al. Proceedings #9: immersive virtual reality rehabilitation for patients with multiple sclerosis. Brain Stimulation. 2019;12(2):e68–e9.
  • Stough D, Bethoux F, Greenberg B, et al. Physical therapy enhanced with a virtual environment: impact on ambulation, mood, and cognition. Arch Phys Med Rehabil. 2016;97(10):e25.
  • Birch N, Graham J, Priestley T. RAPPER II-Robot-Assisted PhysiotheraPy exercises with REXpowered walking aid in patients with spinal cord injury. Spine J. 2016;16(4): s70.
  • Jackowski A, Gebhard M, Thietje R. Head motion and head Gesture-Based robot control: a usability study. IEEE Trans Neural Syst Rehabil Eng. 2018;26(1):161–170.
  • Jezernik S, Scharer R, Colombo G, et al. Adaptive robotic rehabilitation of locomotion: a clinical study in spinally injured individuals. Spinal Cord. 2003;41(12):657–666.
  • Jiryaei Z, Alvar AA, Bani MA, et al. Development and feasibility of a soft pneumatic-robotic glove to assist impaired hand function in quadriplegia patients: a pilot study. J Bodyw Mov Ther. 2021;27:731–736.
  • Corbianco S, Cavallini G, Dini M, et al. Energy cost and psychological impact of robotic-assisted gait training in people with spinal cord injury: effect of two different types of devices. Neurol Sci. 2021;42(8):3357–3366.
  • Gagnon DH, Vermette M, Duclos C, et al. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton. Disabil Rehabil. 2019;14:138–145.
  • Banz R, Bolliger M, Colombo G, et al. Computerized visual feedback: an adjunct to Robotic-Assisted gait training. Phys Ther. 2008;88(10):1135–1145.
  • Koljonen PA, Virk AS, Jeong Y, et al. Outcomes of a multicenter safety and efficacy study of the SuitX phoenix powered exoskeleton for ambulation by patients with spinal cord injury. Front Neurol. 2021;12:689751.
  • Sale P, Russo EF, Scarton A, et al. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study. Eur J Phys Rehabil Med. 2018;54(5):745–751.
  • Eliav R, Rand D, Schwartz Y, et al. Training with adaptive body-controlled virtual reality following acquired brain injury for improving executive functions. Brain Injury. 2017;31:857–858.
  • Nuic D, Vinti M, Karachi C, et al. The feasibility and positive effects of a customised videogame rehabilitation programme for freezing of gait and falls in parkinson’s disease patients: a pilot study. J Neuroeng Rehab. 2018;15(1):31.
  • Olivieri I, Chiappedi M, Meriggi P, et al. Rehabilitation of children with hemiparesis: a pilot study on the use of virtual reality. Biomed Res Int. 2013;2013:695935.
  • Verier A, Drean D, Bar A, et al. Acceptability of a mobile assistance robot with a manipulating arm: evaluation in a home setting with a population of 32 functional tetraplegic patients. Ann Phys Rehabil Med. 2010;53:e22–e3.
  • Iosa M, Aydin M, Candelise C, et al. The michelangelo effect: art improves the performance in a virtual reality task developed for upper limb neurorehabilitation. Front Psychol. 2020;11:611956.
  • Meca-Lallana V, Prefasi D, Alabarcez W, et al. A pilot study to explore patient satisfaction with a virtual rehabilitation program in multiple sclerosis: the RehabVR study protocol. Front Neurol. 2020;11:900.
  • Lozano-Quilis JA, Gil-Gómez H, Gil-Gómez JA, et al. Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial. JMIR Serious Games. 2014;2(2):e12.
  • Guillen-Climent S, Garzo A, Munoz-Alcaraz MN, et al. A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting. J Neuroeng Rehab. 2021;18(1):41.
  • Campo-Prieto P, Rodríguez-Fuentes G, Cancela-Carral JM. Can immersive virtual reality videogames help parkinson’s disease patients? A case study. Sensors. 2021;21(14):4825.
  • Van Beek JJ, Van Wegen EE, Bohlhalter S, et al. Exergaming-based dexterity training in persons with parkinson disease: a pilot feasibility study. J Neurol Phys Ther. 2019;43(3):168–174.
  • Ciullo AS, Veerbeek JM, Temperli E, et al. A novel soft robotic supernumerary hand for severely affected stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2020;28(5):1168–1177.
  • Lledo LD, Diez JA, Bertomeu-Motos A, et al. A comparative analysis of 2D and 3D tasks for virtual reality therapies based on Robotic-Assisted neurorehabilitation for post-stroke patients. Front Aging Neurosci. 2016;8:205.
  • Neil A, Ens S, Pelletier R, et al. Sony PlayStation EyeToy elicits higher levels of movement than the nintendo wii: implications for stroke rehabilitation. Europ J Phys Rehabil Med. 2013;49:13–21.
  • Weber LM, Nilsen DM, Gillen G, et al. Immersive virtual reality mirror therapy for upper limb recovery after stroke: a pilot study. Am J Phys Med Rehabil. 2019;98(9):783–788.
  • Vanbellingen T, Filius SJ, Nyffeler T, et al. Usability of Videogame-Based dexterity training in the early rehabilitation phase of stroke patients: a pilot study. Front Neurol. 2017;8:654.
  • Singh N, Saini M, Anand S, et al. Robotic exoskeleton for wrist and fingers joint in Post-Stroke Neuro-Rehabilitation for Low-Resource settings. IEEE Trans Neural Syst Rehabil Eng. 2019;27(12):2369–2377.
  • Proffitt R, Lange B, Sevick M. Abstract W P135: usability of a virtual reality tool for in-Home stroke rehabilitation: a case series. Stroke. 2015;46(suppl_1):AWP135–AWP.
  • Lambelet C, Temiraliuly D, Siegenthaler M, et al. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. J Neuroeng Rehab. 2020;17(1):132.
  • Kizony R, Weiss PL, Shahar M, et al. TheraGame: a home based virtual reality rehabilitation system. Inter J Disabil Hum Develop. 2006;5(3):265–269.
  • Tamplin J, Loveridge B, Clarke K, et al. Development and feasibility testing of an online virtual reality platform for delivering therapeutic group singing interventions for people living with spinal cord injury. J Telemed Telecare. 2020;26(6):365–375.
  • Meldrum D, Glennon A, Herdman S, et al. Virtual reality rehabilitation of balance: assessment of the usability of the nintendo wii(®) fit Plus. Disabil Rehabil Assist Technol. 2012;7(3):205–210.
  • Bethoux F, Stough D, Sutliff M, et al. Pilot study of powered exoskeleton use for gait rehabilitation in individuals with multiple sclerosis: feasibility, safety, and effects on gait parameters. Arch Phys Med Rehabil. 2020;101(11):e70.
  • Gomez-Vargas D, Ballen-Moreno F, Barria P, et al. The actuation system of the ankle exoskeleton t-flex: first use experimental validation in people with stroke. Brain Sci. 2021;11(4):412.
  • Kilbride C, Scott DJM, Butcher T, et al. Safety, feasibility, acceptability and preliminary effects of the neurofenix platform for rehabilitation via HOMe based gaming exercise for the upper-limb post stroke (RHOMBUS): results of a feasibility intervention study. BMJ Open. 2022;12(2):e052555.
  • Sevit R, Sels R, Bukenbergs S, et al. ARTHE: development of an upper limb active smart wearable orthosis for stroke therapy. Technol Disabil. 2019;31:S75–S6.
  • Demers M, Chan Chun Kong D, Levin MF. Feasibility of incorporating functionally relevant virtual rehabilitation in Sub-acute stroke care: perception of patients and clinicians. Disabil Rehabil Assist Technol. 2019;14(4):361–367.
  • Shahar N, Schwartz I, Portnoy S. Differences in muscle activity and fatigue of the upper limb between Task-Specific training and robot assisted training among individuals post stroke. J Biomech. 2019;89:28–33.
  • Lloréns R, Gil-Gómez JA, Alcañiz M, et al. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clin Rehabil. 2015;29(3):261–268.
  • Llorens R, Colomer-Font C, Alcaniz M, et al. BioTrak virtual reality system: effectiveness and satisfaction analysis for balance rehabilitation in patients with brain injury. Neurologia. 2013;28(5):268–275.
  • Swinnen E, Lefeber N, Willaert W, et al. Motivation, expectations, and usability of a driven gait orthosis in stroke patients and their therapists. Top Stroke Rehabil. 2017;24(4):299–308.
  • Gorsic M, Cikajlo I, Goljar N, et al. A multisession evaluation of an adaptive competitive arm rehabilitation game. J Neuroeng Rehab. 2017;14(1):128.
  • Boone AE, Wolf TJ, Engsberg JR. Combining virtual reality motor rehabilitation with cognitive strategy use in chronic stroke. Am J Occup Ther. 2019;73(4):7304345020p1–7304345020p9.
  • Held JP, Ferrer B, Mainetti R, et al. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system. Eur J Phys Rehabil Med. 2018;54(4):545–553. and others.
  • Tobler-Ammann BC, Surer E, Knols RH, et al. User perspectives on exergames designed to explore the hemineglected space for stroke patients with visuospatial neglect: usability study. JMIR Serious Games. 2017;5(3):e18.
  • Archambault P, Norouzi-Gheidari N, Tao G, et al. Use of exergames for upper extremity rehabilitation in stroke patients. Ann Phys Rehabil Med. 2015;58:e97–e8.
  • O’’Shea R, Broderick M, Bentley P. Adoption of rehabilitation technologies depends on technology usability and acceptability amongst stroke survivors. Europ Stroke J. 2021;6:295.
  • Buccellato KH, Nordstrom M, Murphy JM, et al. A randomized feasibility trial of a novel, integrative, and intensive virtual rehabilitation program for service members Post-Acquired brain injury. Mil Med. 2020;185(1–2):e203–e11. others
  • Carpinella I, Cattaneo D, Bonora G, et al. Wearable Sensor-Based biofeedback training for balance and gait in parkinson disease: a pilot randomized controlled trial. Arch Phys Med Rehabil. 2017;98(4):622–630.e3.
  • Crosbie JH, Lennon S, McNeill MDJ, et al. Virtual reality in the rehabilitation of the upper limb after stroke: the user’s perspective. Cyberpsychol Behav. 2006;9(2):137–141.
  • Lewis GN, Woods C, Rosie JA, et al. Virtual reality games for rehabilitation of people with stroke: perspectives from the users. Disabil Rehabil Assist Technol. 2011;6(5):453–463.
  • Lupinacci G, Gatti G, Melegari C, et al. Interactive design of patient-oriented video-games for rehabilitation: concept and application. Disabil Rehabil Assist Technol. 2018;13(3):234–244.
  • Carifio J, Perla R. Resolving the 50-year debate around using and misusing likert scales. Med Educ. 2008;42(12):1150–1152.
  • Dolnicar S. 5/7-point “likert scales” aren’t always the best option: their validity is undermined by lack of reliability, response style bias, long completion times and limitations to permissible statistical procedures. Ann Tourism Res. 2021;91:103297.
  • Bangor A, Kortum PT, Miller JT. An empirical evaluation of the system usability scale. Inter J Hum Comp Interact. 2008;24(6):574–594.
  • Lewis JR. The system usability scale: past, present, and future. Inter J Hum Comp Interact. 2018;34(7):577–590.
  • Folador JP, Souza Santos MC, Oliveira Andrade A. System usability scale (SUS) applied to a webbased integrated system for the management of data from people with parkinson’s disease. In: XII Simpósio De Engenharia Biomédica - Ix Simpósio De Instrumentação E Imagens Médicas, Uberlândia city, Brazil. 2019.
  • Demers L, Weiss-Lambrou R, Ska B. Item analysis of the Quebec user evaluation of satisfaction with assistive technology (QUEST). Assist Technol. 2000;12(2):96–105.
  • Demers L, Monette M, Lapierre Y, et al. Reliability, validity, and applicability of the Quebec user evaluation of satisfaction with assistive technology (QUEST 2.0) for adults with multiple sclerosis. Disabil Rehabil. 2002;24(1–3):21–30.
  • Demers L, Weiss-Lambrou R, Ska B. Development of the Quebec user evaluation of satisfaction with assistive technology (QUEST). Assist Technol. 1996;8(1):3–13.
  • Atigossou OLG, Honado AS, Routhier F, et al. Psychometric properties of the psychosocial impact of assistive devices scale (PIADS): a systematic review. Assistive Technol. 2022;
  • Gao M, Kortum P, Oswald F. Psychometric evaluation of the USE (usefulness, satisfaction, and ease of use) questionnaire for reliability and validity. Proc Hum Factors Ergon Soc Ann Meeting. 2018;62(1):1414–1418.
  • Morgan DG, Kosteniuk J, Stewart N, et al. The telehealth satisfaction scale: reliability, validity, and satisfaction with telehealth in a rural memory clinic population. Telemed J E Health. 2014;20(11):997–1003.
  • Xiao YM, Wang ZM, Wang MZ, et al. The appraisal of reliability and validity of subjective workload assessment technique and NASA-task load index. Zhonghua Lao Dong Wei Sheng Zhi ye Bing za Zhi = Zhonghua Laodong Weisheng Zhiyebing Zazhi = Chinese J Industr Hygiene Occupat Dis. 2005;23:178–181.
  • Devos H, Gustafson K, Ahmadnezhad P, et al. Psychometric properties of NASA-TLX and index of cognitive activity as measures of cognitive workload in older adults. Brain Sci. 2020;
  • Larsen DL, Attkisson CC, Hargreaves WA, et al. Assessment of client/patient satisfaction: development of a general scale. Eval Program Plann. 1979;2(3):197–207.
  • Kelly PJ, Kyngdon F, Ingram I, et al. The client satisfaction questionnaire-8: psychometric properties in a cross-sectional survey of people attending residential substance abuse treatment. Drug Alcohol Rev. 2018;37(1):79–86.