151
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Morpho-molecular characterization of sand-dwelling dinoflagellate communities from the German Wadden Sea and insights into their spatiotemporal distribution

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 196-217 | Received 06 Apr 2023, Accepted 01 Nov 2023, Published online: 23 Dec 2023

References

  • Abad, D., Albaina, A., Aguirre, M., Laza-Martínez, A., Uriarte, I., Iriarte, A., Villate, F. & Estonba, A. (2016). Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Marine Biology, 163(7): 149.
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215: 403‒410.
  • Al-Yamani, F. & Saburova, M. (2010). Illustrated guide on the Flagellates of Kuwait’s intertidal soft sediments. Kuwait Institute for Scientific Research, Kuwait.
  • Baillie, K.D. (1971). A taxonomic and ecological study of the intertidal, sand-dwelling dinoflagellates of the north-eastern Pacific Ocean. MSc thesis, 143. Department of Botany, University of British Columbia.
  • Balech, E. (1956). Étude des dinoflagellés du sable de Roscoff. Revue Algologique, 2: 29‒52.
  • Barbera, P., Kozlov, A.M., Czech, L., Morel, B., Darriba, D., Flouri, T. & Stamatakis, A. (2019). EPA-ng: massively parallel evolutionary placement of genetic sequences. Systematic Biology, 68: 365‒369.
  • Bik, H.M., Sung, W., De Ley, P., Baldwin, J.G., Sharma, J., Rocha-Olivares, A. & Thomas, W.K. (2012). Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Molecular Ecology, 21: 1048‒1059.
  • Borchhardt, N., Chomérat, N., Bilien, G., Zentz, F., Rhodes, L., Murray, S.A. & Hoppenrath, M. (2021). Morphology and molecular phylogeny of Bindiferia gen. nov. (Dinophyceae), a new marine, sand-dwelling dinoflagellate genus formerly classified within Amphidinium. Phycologia, 60: 631‒643.
  • Burki, F., Sandin, M.M. & Jamy, M. (2021). Diversity and ecology of protists revealed by metabarcoding. Current Biology, 31: R1267‒R1280.
  • Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. & Holmes, S.P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods, 13: 581‒587.
  • Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25: 1972‒1973.
  • Caracciolo, M., Rigaut‐Jalabert, F., Romac, S., Mahé, F., Forsans, S., Gac, J., Arsenieff, L., Manno, M., Chaffron, S., Cariou, T., Hoebeke, M., Bozec, Y., Goberville, E., Le Gall, F., Guilloux, L., Baudoux, A., de Vargas, C., Not, F., Thiébaut, E., Henry, N. & Simon, N. (2022). Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Molecular Ecology, 31: 3761‒3783.
  • Chacón, J. & Gottschling, M. (2020). Dawn of the dinophytes: a first attempt to date origin and diversification of harmful algae. Harmful Algae, 97: 101871.
  • Chen, W., Pan, Y., Yu, L., Yang, J. & Zhang, W. (2017). Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, southeast China. Frontiers in Microbiology, 8: 1912.
  • Chomérat, N., Saburova, M., Bilien, G., Zentz, F. & Hoppenrath, M. (2023). Morphology and molecular phylogeny of a widely distributed but little-known sand-dwelling phototrophic dinoflagellate Coutea sabulosa gen. et sp. nov. (Dinophyceae). Phycologia, 62: 244‒258.
  • Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012). jModelTest 2: more models, new heuristics and high-performance computing. Nature Methods, 9: 772.
  • Dragesco, J. (1965). Étude cytologique de quelques flagellés mésopsammiques. Cahiers de Biologie Marine, 6: 83‒115.
  • Drebes, G. & Elbrächter, M. (1976). A checklist of planktonic diatoms and dinoflagellates from Helgoland and List (Sylt), German Bight. Botanica Marina, 19: 75‒84.
  • Flø Jørgensen, M., Murray, S.A. & Daugbjerg, N. (2004). A new genus of athecate interstitial dinoflagellates, Togula gen. nov., previously encompassed within Amphidinium sensu lato: inferred from light and electron microscopy and phylogenetic analyses of partial large subunit ribosomal DNA sequences. Phycological Research, 52: 284‒299.
  • Forster, D., Dunthorn, M., Mahé, F., Dolan, J.R., Audic, S., Bass, D., Bittner, L., Boutte, C., Christen, R., Claverie, J.M., Decelle, J., Edvardsen, B., Egge, E., Eikrem, W., Gobet, A., Kooistra, W.H.C.F., Logares, R., Massana, R., Montresor, M., Not, F., Ogata, H., Pawlowski, J., Pernice, M.C., Romac, S., Shalchian-Tabrizi, K., Simon, N., Richards, T.A., Santini, S., Sarno, D., Siano, R., Vaulot, D., Wincker, P., Zingone, A., de Vargas, C. & Stoeck, T. (2016). Benthic protists: the under-charted majority. FEMS Microbiology Ecology, 92(8): fiw120.
  • Funaki, H., Gaonkar, C.C., Kataoka, T., Nishimura, T., Tanaka, K., Yanagida, I., Abe, S., Yamaguchi, H., Nagasaki, K. & Adachi, M. (2022). Horizontal and vertical distribution of Gambierdiscus spp. (Dinophyceae) including novel phylotypes in Japan identified by 18S rDNA metabarcoding. Harmful Algae, 111: 102163.
  • Gómez, F. & Artigas, L.F. (2014). High diversity of dinoflagellates in the intertidal sandy sediments of Wimereux (north-east English Channel, France). Journal of the Marine Biological Association of the United Kingdom, 94: 443‒457.
  • Gong, J., Shi, F., Ma, B., Dong, J., Pachiadaki, M., Zhang, X. & Edgcomb, V.P. (2015). Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environmental Microbiology, 17: 3722‒3737.
  • Gran-Stadniczeñko, S., Egge, E., Hostyeva, V., Logares, R., Eikrem, W. & Edvardsen, B. (2019). Protist diversity and seasonal dynamics in Skagerrak plankton communities as revealed by metabarcoding and microscopy. Journal of Eukaryotic Microbiology, 66: 494‒513.
  • Gribble, K.E. & Anderson, D.M. (2007). High intraindividual, intraspecific, and interspecific variability in large-subunit ribosomal DNA in the heterotrophic dinoflagellates Protoperidinium, Diplopsalis, and Preperidinium (Dinophyceae). Phycologia, 46: 315‒324.
  • Groendahl, S., Kahlert, M. & Fink, P. (2017). The best of both worlds: a combined approach for analyzing microalgal diversity via metabarcoding and morphology-based methods. PLos One, 12(2): e0172808.
  • Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., De Vargas, C., Decelle, J., Del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H.C.F., Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.-L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P. & Christen, R. (2013). The protist Ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Research, 41(D1): D597‒D604.
  • Handy, S.M., Bachvaroff, T.R., Timme, R.E., Coats, D.W., Kim, S. & Delwiche, C.F. (2009). Phylogeny of four dinophysiacean genera (Dinophyceae, Dinophysiales) based on rDNA sequences from single cells and environmental samples. Journal of Phycology, 45: 1163‒1174.
  • Herdman, E.C. (1922). Notes on dinoflagellates and other organisms causing discolouration of sant at Port Erin II. Proceedings and Transactions of the Liverpool Biological Society, 36: 15‒30.
  • Hertweck, G., Wehrmann, A., Liebezeit, G. & Steffens, M. (2005). Ichnofabric zonation in modern tidal flats: Palaeoenvironmental and palaeotrophic implications. Senckenbergiana maritima, 35: 189‒201.
  • Hoppenrath, M. (2000a). Morphology and taxonomy of Sinophysis (Dinophyceae, Dinophysiales) including two new marine sand-dwelling species from the North German Wadden Sea. European Journal of Phycology, 35: 153‒162.
  • Hoppenrath, M. (2000b). Morphology and taxonomy of six marine sand-dwelling Amphidiniopsis species (Dinophyceae, Peridiniales), four of them new, from the German Bight, North Sea. Phycologia, 39: 482‒497.
  • Hoppenrath, M. (2000c). Morphology and taxonomy of the marine sand-dwelling genus Thecadinium (Dinophyceae), with the description of two new species from the North German Wadden Sea. Phycologia, 39: 96‒108.
  • Hoppenrath, M. (2000d). Taxonomische und ökologische Untersuchungen von Flagellaten mariner Sande. PhD thesis. University of Hamburg, Germany.
  • Hoppenrath, M. (2004). A revised check-list of planktonic diatoms and dinoflagellates from Helgoland (North Sea, German Bight). Helgoland Marine Research, 58: 243‒251.
  • Hoppenrath, M., Elbrächter, M. & Drebes, G. (2009). Marine Phytoplankton. Selected microphytoplankton species from the North Sea Around Helgoland and Sylt, 246. Kleine Senckenberg-Reihe 49, Schweizerbartsche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart, Germany.
  • Hoppenrath, M., Elbrächter, M., Halliger, H., Koeman, R.P.T., Krakhmalny, A., Surek, B., Erler, K. & Luckas, B. (2007). First records of the benthic, bloom-forming, non-toxic dinoflagellate Thecadinium yashimaense (Dinophyceae) in Europe: with special emphasis on the invasion in the North Sea. Helgoland Marine Research, 61: 157‒165.
  • Hoppenrath, M., Murray, S.A., Chomérat, N. & Horiguchi, T. (2014). Marine benthic dinoflagellates—Unveiling their worldwide biodiversity, 276. Kleine Senckenberg-Reihe 54.E. Schweizerbart’sche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart, Germany.
  • Hoppenrath, M., Reñé, A., Satta, C.T., Yamaguchi, A. & Leander, B.S. (2020). Morphology and molecular phylogeny of a new marine, sand-dwelling dinoflagellate genus, Pachena (Dinophyceae), with descriptions of three new species. Journal of Phycology, 56: 798‒817.
  • Hoppenrath, M., Reñé, A., Satta, C.T., Yamaguchi, A. & Selina, M.S. (2021). Molecular phylogeny and morphology of Carinadinium gen. nov. (Dinophyceae, Gonyaulacales), including marine sand-dwelling dinoflagellate species formerly classified within Thecadinium. European Journal of Protistology, 81: 125835.
  • Houpt, P. & Hoppenrath, M. (2006). First record of the marine, benthic dinoflagellate Spiniferodinium galeiforme (Dinophyceae) from a temperate region. Phycologia, 45: 10‒12.
  • Huang, P., Zhao, F., Xu, K. & Zhou, T. (2020). Are marine benthic microeukaryotes different from macrobenthos in terms of regional geographical distribution? New insights revealed by RNA metabarcoding. Continental Shelf Research, 209: 104255.
  • Katoh, K. & Standley, D.M. (2013). MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30: 772‒780.
  • Kim, S., Yoon, J. & Park, M.G. (2015). Occurrence and molecular phylogenetic characteristics of benthic sand-dwelling dinoflagellates in the intertidal flat of Dongho, West Coast of Korea. Journal of the Korean Society of Oceanography, 20: 141‒150.
  • Kohli, G.S., Murray, S.A., Neilan, B.A., Rhodes, L.L., Harwood, D.T., Smith, K.F., Meyer, L., Capper, A., Brett, S. & Hallegraeff, G.M. (2014a). High abundance of the potentially maitotoxic dinoflagellate Gambierdiscus carpenteri in temperate waters of New South Wales, Australia. Harmful Algae, 39: 134‒145.
  • Kohli, G.S., Neilan, B.A., Brown, M.V., Hoppenrath, M. & Murray, S.A. (2014b). Cob gene pyrosequencing enables characterization of benthic dinoflagellate diversity and biogeography. Environmental Microbiology, 16: 467‒485.
  • Kong, J., Wang, Y., Warren, A., Huang, B. & Sun, P. (2019). Diversity distribution and assembly mechanisms of planktonic and benthic microeukaryote communities in intertidal zones of southeast Fujian, China. Frontiers in Microbiology, 10: 2640.
  • Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35: 4453‒4455.
  • Kretschmann, J., Elbrächter, M., Zinssmeister, C., Soehner, S., Kirsch, M., Kusber, W.H. & Gottschling, M. (2015). Taxonomic clarification of the dinophyte Peridinium acuminatum Ehrenb., ≡ Scrippsiella acuminata, comb. nov. (Thoracosphaeraceae, Peridiniales). Phytotaxa, 220: 239‒256.
  • Larsen, J. (1985). Algal studies of the Danish Wadden Sea. II. A taxonomic study of psammobious dinoflagellates. Opera Botanica, 79: 14‒37.
  • Larsen, J. & Patterson, D.J. (1990). Some flagellates (Protista) from marine tropical sediments. Journal of Natural History, 24: 801‒937.
  • Le Bescot, N., Mahé, F., Audic, S., Dimier, C., Garet, M.-J., Poulain, J., Wincker, P., de Vargas, C. & Siano, R. (2016). Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environmental Microbiology, 18: 609‒626.
  • Letunic, I. & Bork, P. (2019). Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Research, 47(W1): W256‒W259.
  • Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17: 10‒12.
  • McMurdie, P.J. & Holmes, S. (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLos One, 8: 361217.
  • Mohammad-Noor, N., Daugbjerg, N., Moestrup, Ø. & Anton, A. (2004). Marine epibenthic dinoflagellates from Malaysia-a study of live cultures and preserved samples based on light and scanning electron microscopy. Nordic Journal of Botany, 24: 629‒690.
  • Montani, S. & Huang, L.F. (1998). Temporal and spatial distribution of sand-dwelling dinoflagellates in a tidal flat of Yashima Bay, the Seto Inland Sea, Japan. In Proceedings of the Fourth International Scientific Symposium (UNESCO/IOC/WESTPAC), 378‒387. Okinawa, Japan.
  • Mordret, S., Piredda, R., Vaulot, D., Montresor, M., Kooistra, W.H.C.F. & Sarno, D. (2018). DINOREF: a curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene. Molecular Ecology Resources, 18: 974‒987.
  • Murray, S.A. (2003). Diversity and phylogenetics of sand-dwelling dinoflagellates from Southern Australia. PhD thesis. University of Sydney, Australia.
  • Nagler, M., Insam, H., Pietramellara, G. & Ascher-Jenull, J. (2018). Extracellular DNA in natural environments: features, relevance and applications. Applied Microbiology and Biotechnology, 102: 6343‒6356.
  • Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32: 268‒274.
  • Okamoto, N., Keeling, P.J., Leander, B.S. & Tai, V. (2022). Microbial communities in sandy beaches from the three domains of life differ by microhabitat and intertidal location. Molecular Ecology, 31: 3210‒3227.
  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H., Szoecs, E. & Wagner, H. (2019). Vegan: community ecology package. R package version 2.5-4. https://CRAN.R-project.org/package=vegan.
  • Pan, Y., Yang, J., McManus, G.B., Lin, S. & Zhang, W. (2019). Insights into protist diversity and biogeography in intertidal sediments sampled across a range of spatial scales. Limnology and Oceanography, 65: 1103‒1115.
  • Pawlowski, J., Bruce, K., Panksep, K., Aguirre, F.I., Amalfitano, S., Apothéloz-Perret-Gentil, L., Baussant, T., Bouchez, A., Carugati, L., Cermakova, K., Cordier, T., Corinaldesi, C., Costa, F.O., Danovaro, R., Dell’Anno, A., Duarte, S., Eisendle, U., Ferrari, B.J.D., Frontalini, F., Frühe, L., Haegerbaeumer, A., Kisand, V., Krolicka, A., Lanzén, A., Leese, F., Lejzerowicz, F., Lyautey, E., Maček, I., Sagova-Marečková, M., Pearman, J.K., Pochon, X., Stoeck, T., Vivien, R., Weigand, A. & Fazi, S. (2022). Environmental DNA metabarcoding for benthic monitoring: a review of sediment sampling and DNA extraction methods. Science of the Total Environment, 818: 151783.
  • R Core Team. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R_project.org/.
  • Reise, K., Herre, E. & Sturm, M. (1994). Biomass and abundance of macrofauna in intertidal sediments of Königshafen in the northern Wadden Sea. Helgoländer Meeresuntersuchungen, 48: 201‒215.
  • Reiss, H. & Kröncke, I. (2001). Spatial and temporal distribution of macrofauna in the Otzumer Balje (East Frisian Wadden Sea, Germany). Senckenbergiana Maritima, 31: 283‒298.
  • Reñé, A., Auladell, A., Reboul, G., Moreira, D. & López-García, P. (2020b). Performance of the melting seawater-ice elution method on the metabarcoding characterization of benthic protist communities. Environmental Microbiology Reports, 12: 314‒323.
  • Reñé, A. & Hoppenrath, M. (2019). Psammodinium inclinatum gen. nov. et comb. nov. (= Thecadinium inclinatum Balech) is the closest relative to the toxic dinoflagellate genera Gambierdiscus and Fukuyoa. Harmful Algae, 84: 161‒171.
  • Reñé, A., Hoppenrath, M., Reboul, G., Moreira, D. & López-García, P. (2021). Composition and temporal dynamics of sand-dwelling dinoflagellate communities from three Mediterranean beaches. Aquatic Microbial Ecology, 86: 85‒98.
  • Reñé, A., Satta, C.T., López-García, P. & Hoppenrath, M. (2020a). Re-evaluation of Amphidiniopsis (Dinophyceae) morphogroups based on phylogenetic relationships, and description of three new sand-dwelling species from the NW Mediterranean. Journal of Phycology, 56: 68‒84.
  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4: e2584.
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012). Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61: 539‒542.
  • Saburova, M., Al-Yamani, F. & Polikarpov, P. (2009). Biodiversity of free-living flagellates in Kuwait’s intertidal sediments. Biorisk, 3: 97‒110.
  • Saburova, M. & Chomérat, N. (2019). Laciniporus arabicus gen. et sp. nov. (Dinophyceae, Peridiniales), a new thecate, marine, sand-dwelling dinoflagellate from the Northern Indian Ocean (Arabian Sea). Journal of Phycology, 55: 84‒103.
  • Salonen, I.S., Chronopoulou, P.M., Leskinen, E. & Koho, K.A. (2019). Metabarcoding successfully tracks temporal changes in eukaryotic communities in coastal sediments. FEMS Microbiology Ecology, 95: fiy226.
  • Santi, I., Kasapidis, P., Karakassis, I. & Pitta, P. (2021). A comparison of DNA metabarcoding and microscopy methodologies for the study of aquatic microbial eukaryotes. Diversity, 13: 180.
  • Santoferrara, L., Burki, F., Filker, S., Logares, R., Dunthorn, M. & McManus, G.B. (2020). Perspectives from ten years of protist studies by high‐throughput metabarcoding. Journal of Eukaryotic Microbiology, 67: 612‒622.
  • Schückel, U., Beck, M. & Kröncke, I. (2013). Spatial variability in structural and functional aspects of macrofauna communities and their environmental parameters in the Jade Bay (Wadden Sea Lower Saxony, southern North Sea). Helgoland Marine Research, 67: 121‒136.
  • Schückel, U., Beck, M. & Kröncke, I. (2015). Macrofauna communities of tidal channels in Jade Bay (German Wadden Sea): spatial patterns, relationships with environmental characteristics, and comparative aspects. Marine Biodiversity, 45: 841‒855.
  • Schückel, U. & Kröncke, I. (2013). Temporal changes in intertidal macrofauna communities over eight decades: a result of eutrophication and climate change. Estuarine, Coastal and Shelf Science, 117: 210‒218.
  • Selina, M.S. (2016). Seasonal and long-term dynamics of sand-dwelling dinoflagellates (Dinoflagellata) in Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology, 42: 458‒470.
  • Selina, M.F., Efimova, K.V., Morozova, T.V.& Hoppenrath, M. (2023). Morpho-molecular description of the new sand-dwelling dinoflagellate genus aliferia gen. nov. (dinophyceae) from the Sea of Japan, including two new species. Phycologia, 62: 366–382.
  • Smith, K.F., Kohli, G.S., Murray, S. & Rhodes, L. (2017). Assessment of the metabarcoding approach for community analysis of benthic-epiphytic dinoflagellates using mock communities. New Zealand Journal of Marine and Freshwater Research, 51: 555‒576.
  • Tamura, M. (2005). A systematic study of benthic marine dinoflagellates. PhD thesis. Hokkaido University, Japan.
  • Taylor, F.J.R., Hoppenrath, M. & Saldarriaga, J.F. (2008). Dinoflagellate diversity and distribution. Biodiversity and Conservation, 17: 407‒418.
  • Uhlig, G. (1964). Eine einfache methode zur extraktion der vagilen, mesopsammalen microfauna. Helgoländer Wissenschaftliche Meeresuntersuchungen, 11: 178‒185.
  • Wickham, H. (2016). ggplot2: elegant graphics for data analysis. NewYork, USA: Springer-Verlag.
  • Yamada, N., Sakai, H., Onuma, R., Kroth, P.G. & Horiguchi, T. (2020). Five non-motile dinotom dinoflagellates of the genus Dinothrix. Frontiers In Plant Science, 11: 591050.
  • Yamaguchi, A., Hoppenrath, M., Murray, S., Kretzschmar, A.L., Horiguchi, T. & Wakeman, K.C. (2023). Morphology and molecular phylogeny of the benthic dinoflagellates (Dinophyceae, Peridiniales) Amphidiniopsis crumena n. sp. and Amphidiniopsis nileribanjensis n. sp. European Journal of Protistology, 87: 125940.
  • Zhang, W., Pan, Y., Yang, J., Chen, H., Holohan, B., Vaudrey, J., Lin, S. & McManus, G.B. (2018). The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation. Environmental Microbiology, 20: 462‒476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.