190
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Modeling of groundwater-surface water interactions: a review of integration strategies

Pages 132-146 | Received 11 May 2023, Accepted 22 Sep 2023, Published online: 03 Oct 2023

References

  • Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E., and Rasmussen, J. (1986). “An introduction to the European hydrological system—Systeme Hydrologique Europeen,“SHE”, 1: History and philosophy of a physically-based, distributed modeling system.” J. Hydrol, 87(1–2), 45–59. http://doi.org/10.1016/0022-1694(86)90114-9
  • Ahmadi, H. (2022). “An implicit numerical model for solving free-surface seepage problems.” ISH J. Hydraul. Eng., 28(4), 391–399. http://doi.org/10.1080/09715010.2021.1925982
  • Ahmadi, H., Kilanehei, F., and Nazari-Sharabian, M. (2021). “Impact of pumping rate on contaminant transport in groundwater—A numerical study.” Hydrology, 8(3), 103. http://doi.org/10.3390/hydrology8030103
  • Ahmadi, H., Namin, M.M., and Kilanehei, F. (2016). “Development a numerical model of flow and contaminant transport in layered soils.” Adv. Environ. Res, 5(4), 263–282. http://doi.org/10.12989/aer.2016.5.4.263
  • Akbari, F., Shourian, M., and Moridi, A. (2022). “Assessment of the climate change impacts on the watershed-scale optimal crop pattern using a surface-groundwater interaction hydro-agronomic model.” Agr. Water Manage., 265, 107508. http://doi.org/10.1016/j.agwat.2022.107508
  • Amaran, S., Sahinidis, N.V., Sharda, B., and Bury, S.J. (2016). “Simulation optimization: A review of algorithms and applications.” Ann. Oper. Res., 240(1), 351–380. http://doi.org/10.1007/s10479-015-2019-x
  • Anibas, C., Verbeiren, B., Buis, K., Chormański, J., De Doncker, L., Okruszko, T., Meire, P., and Batelaan, O. (2012). “A hierarchical approach on groundwater-surface water interaction in wetlands along the upper Biebrza river, Poland.” Hydrol. Earth Syst. Sci, 16(7), 2329–2346. https://doi.org/10.5194/hess-16-2329-2012
  • An, Y., Lu, W., and Yan, X. (2018). “A surrogate-based simulation–optimization approach application to parameters’ identification for the HydroGeoSphere model.” Environ. Earth Sci., 77(17), 1–8. http://doi.org/10.1007/s12665-018-7806-7
  • Araghinejad, S. (2013). “Data-driven modeling: Using MATLAB® in water resources and environmental engineering.” Vol. 67. Springer Science & Business Media. http://doi.org/10.1007/978-94-007-7506-0
  • Arbogast, T. (2002). “Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow.” Computat. Geosci., 6(3), 453–481. http://doi.org/10.1023/A:1021295215383
  • Asher, M.J., Croke, B.F., Jakeman, A.J., and Peeters, L.J. (2015). “A review of surrogate models and their application to groundwater modeling.” Water Resour Res, 51(8), 5957–5973. http://doi.org/10.1002/2015WR016967
  • Atchley, A.L., Painter, S.L., Harp, D.R., Coon, E.T., Wilson, C.J., Liljedahl, A.K., and Romanovsky, V.E. (2015). “Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0. 83).” Geosci. Model Dev., 8(9), 2701–2722. http://doi.org/10.5194/gmd-8-2701-2015
  • Bansal, R.K. (2017). “Approximation of surface–groundwater interaction mediated by vertical streambank in sloping terrains.” J. Ocean Eng. Sci., 2(1), 18–27. http://doi.org/10.1016/j.joes.2016.10.002
  • Baran, A.A. (2019). Integrated Model-Based Impact Assessment of Climate Change and Land Use Change on the Occoquan Watershed Doctoral dissertation, Virginia Tech.
  • Barthel, R., and Banzhaf, S. (2016). “Groundwater and surface water interaction at the regional-scale–a review with focus on regional integrated models.” Water Resour. Manage, 30(1), 1–32. https://doi.org/10.1007/s11269-015-1163-z
  • Baú, D.A. (2012). “Planning of groundwater supply systems subject to uncertainty using stochastic flow reduced models and multi-objective evolutionary optimization.” Water Resour. Manage, 26(9), 2513–2536. https://doi.org/10.1007/s11269-012-0030-4
  • Bistrian, D.A., and Navon, I.M. (2017). “The method of dynamic mode decomposition in shallow water and a swirling flow problem.” Int. J. Numer. Meth. Fluids, 83(1), 73–89. https://doi.org/10.1002/fld.4257
  • Bixio, A.C., Orlandini, S., Paniconi, C., and Putti, M. (2000). “Physically-based distributed model for coupled surface runoff and subsurface flow simulation at the catchment scale.” Comput. Methods, Surf. Water Syst. Hydrol., 2, 1115–1122.
  • Blatman, G., and Sudret, B. (2010). “Efficient computation of global sensitivity indices using sparse polynomial chaos expansions.” Reliab. Eng. Syst. Safe., 95(11), 1216–1229. http://doi.org/10.1016/j.ress.2010.06.015
  • Boyce, S.E., Nishikawa, T., and Yeh, W.W. (2015). “Reduced order modeling of the Newton formulation of MODFLOW to solve unconfined groundwater flow.” Adv. Water Resour., 83, 250–262. http://doi.org/10.1016/j.advwatres.2015.06.005
  • Branger, F., Braud, I., Debionne, S., Viallet, P., Dehotin, J., Henine, H., and Anquetin, S. (2010). “Towards multi-scale integrated hydrological models using the LIQUID® framework. Overview of the concepts and first application examples.” Environ. Model. Softw., 25(12), 1672–1681. https://doi.org/10.1016/j.envsoft.2010.06.005
  • Brunner, P., and Simmons, C.T. (2012). “HydroGeoSphere: A fully integrated, physically based hydrological model.” Ground Water, 50(2), 170–176. http://doi.org/10.1111/j.1745-6584.2011.00882.x
  • Camporese, M., Paniconi, C., Putti, M., and Orlandini, S. (2010). “Surface‐subsurface flow modeling with path‐based runoff routing, boundary condition‐based coupling, and assimilation of multisource observation data.” Water Resour Res, 46(2), https://doi.org/10.1029/2008WR007536
  • Cardoso, M.A., Durlofsky, L.J., and Sarma, P. (2009). “Development and application of reduced‐order modeling procedures for subsurface flow simulation.” Int J Numer Methods Eng, 77(9), 1322–1350. http://doi.org/10.1002/nme.2453
  • Chen, I.T., Chang, L.C., and Chang, F.J. (2018). “Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps.” J. Hydrol, 556, 131–142. http://doi.org/10.1016/j.jhydrol.2017.10.015
  • Chen, M., Voinov, A., Ames, D.P., Kettner, A.J., Goodall, J.L., Jakeman, A.J., Barton, M.C., Harpham, Q., Cuddy, S.M., DeLuca, C., and Yue, S. (2020). “Position paper: Open web-distributed integrated geographic modeling and simulation to enable broader participation and applications.” Earth-Sci. Rev., 207, 103223. http://doi.org/10.1016/j.earscirev.2020.103223
  • Christelis, V., Kopsiaftis, G., and Mantoglou, A. (2019). “Performance comparison of multiple and single surrogate models for pumping optimization of coastal aquifers.” Hydrol. Sci. J., 64(3), 336–349. http://doi.org/10.1080/02626667.2019.1584400
  • Christelis, V., Regis, R.G., and Mantoglou, A. (2018). “Surrogate-based pumping optimization of coastal aquifers under limited computational budgets.” J. Hydroinform., 20(1), 164–176. http://doi.org/10.2166/hydro.2017.063
  • Chunn, D., Faramarzi, M., Smerdon, B., and Alessi, D.S. (2019). “Application of an integrated SWAT–MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater–surface water interactions in West-Central Alberta.” Water (Switzerland), 11(1), 110. http://doi.org/10.3390/w11010110
  • Condon, L.E., and Maxwell, R.M. (2013). “Implementation of a linear optimization water allocation algorithm into a fully integrated physical hydrology model.” Adv. Water Resour., 60, 135–147. http://doi.org/10.1016/j.advwatres.2013.07.012
  • Daga Bhandari, A., Pradhan, V.H., and Bansal, R.K. (2018). “New analytical solution for stream–aquifer interaction under constant replenishment.” Appl. Water Sci., 8(6), 1–8. https://doi.org/10.1007/s13201-018-0814-7
  • Dagès, C., Paniconi, C., and Sulis, M. (2012). “Analysis of coupling errors in a physically-based integrated surface water–groundwater model.” Adv. Water Resour., 49, 86–96. http://doi.org/10.1016/j.advwatres.2012.07.019
  • Dahl, M., Nilsson, B., Langhoff, J.H., and Refsgaard, J.C. (2007). “Review of classification systems and new multi-scale typology of groundwater–surface water interaction.” J. Hydrol, 344(1–2), 1–16. http://doi.org/10.1016/j.jhydrol.2007.06.027
  • Daneshian, B., Habibagahi, G., and Nikooee, E. (2021). “Determination of unsaturated hydraulic conductivity of sandy soils: A new pore network approach.” Acta Geotech., 16(2), 449–466. https://doi.org/10.1007/s11440-020-01088-3
  • Dawson, C. (2008). “A continuous/discontinuous galerkin framework for modeling coupled subsurface and surface water flow.” Comput Geosci, 12(4), 451–472. https://doi.org/10.1007/s10596-008-9085-y
  • Demissie, Y.K., Valocchi, A.J., Minsker, B.S., and Bailey, B.A. (2009). “Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions.” J. Hydrol, 364(3–4), 257–271. http://doi.org/10.1016/j.jhydrol.2008.11.007
  • Dey, S., and Dhar, A. (2020). “On proper orthogonal decomposition (POD) based reduced-order modeling of groundwater flow through heterogeneous porous media with point source singularity.” Adv. Water Resour., 144, 103703. http://doi.org/10.1016/j.advwatres.2020.103703
  • Dunbar, W.S., and Woodbury, A.D. (1989). “Application of the Lanczos algorithm to the solution of the groundwater flow equation.” Water Resour Res, 25(3), 551–558. http://doi.org/10.1029/WR025i003p00551
  • Efendiev, Y., Galvis, J., and Thomines, F. (2012). “A systematic coarse-scale model reduction technique for parameter-dependent flows in highly heterogeneous media and its applications.” Multiscale Model Simul, 10(4), 1317–1343. https://doi.org/10.1137/110853030
  • El‐Nasr, A.A., Arnold, J.G., Feyen, J., and Berlamont, J. (2005).“Modelling the hydrology of a catchment using a distributed and a semi‐distributed model.” Hydrological Processes: An International Journal, 19(3), 573–587. https://doi.org/10.1002/hyp.5610
  • Elsawwaf, M., Feyen, J., Batelaan, O., and Bakr, M. (2014). “Groundwater–surface water interaction in lake Nasser, Southern Egypt.” Hydrol Process, 28(3), 414–430. http://doi.org/10.1002/hyp.9563
  • Emara, N.A., Hussein, A.S., Khalifa, M.E., and Abdel-Wahab, M.S. (2008, January). A hierarchical approach for groundwater modeling. In Proceedings of the Twelfth International Water Technology Conference, IWTC12, Alexandria, Egypt, 1483–1498.
  • Ewen, J., Parkin, G., and O’Connell, P.E. (2000). “SHETRAN: Distributed river basin flow and transport modeling system.” J. Hydrol. Eng., 5(3), 250–258. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(250)
  • Fallah-Mehdipour, E., Haddad, O.B., and Mariño, M.A. (2013). “Prediction and simulation of monthly groundwater levels by genetic programming.” J. Hydro-Environ. Res., 7(4), 253–260. http://doi.org/10.1016/j.jher.2013.03.005
  • Fatichi, S., Vivoni, E.R., Ogden, F.L., Ivanov, V.Y., Mirus, B., Gochis, D., Downer, C.W., Camporese, M., Davison, J.H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton, D. (2016). “An overview of current applications, challenges, and future trends in distributed process-based models in hydrology.” J. Hydrol, 537, 45–60. https://doi.org/10.1016/j.jhydrol.2016.03.026
  • Fen, C.S., Chan, C., and Cheng, H.C. (2009). “Assessing a response surface-based optimization approach for soil vapor extraction system design.” J. Water Resour. Plann. Manage., 135(3), 198. https://doi.org/10.1061/(ASCE)0733-9496(2009)135:3(198)
  • Fienen, M.N., Masterson, J.P., Plant, N.G., Gutierrez, B.T., and Thieler, E.R. (2013). “Bridging groundwater models and decision support with a Bayesian network.” Water Resour Res, 49(10), 6459–6473. http://doi.org/10.1002/wrcr.20496
  • Fisher, S.G., Sponseller, R.A., and Heffernan, J.B. (2004). “Horizons in stream biogeochemistry: Flowpaths to progress.” Ecology, 85(9), 2369–2379. http://doi.org/10.1890/03-0244
  • Frei, S., Fleckenstein, J.H., Kollet, S.J., and Maxwell, R.M. (2009). “Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model.” J. Hydrol, 375(3–4), 383–393. http://doi.org/10.1016/j.jhydrol.2009.06.038
  • Furman, A. (2008). “Modeling coupled surface–subsurface flow processes: A review.” Vadose Zone J, 7(2), 741–756. http://doi.org/10.2136/vzj2007.0065
  • Ganapathysubramanian, B., and Zabaras, N. (2007). “Modeling diffusion in random heterogeneous media: Data-driven models, stochastic collocation and the variational multiscale method.” J. Comput. Phys., 226(1), 326–353. http://doi.org/10.1016/j.jcp.2007.04.009
  • Ganji, A., and Sushama, L. (2018). “Improved representation of surface‐groundwater interaction in the Canadian land surface scheme.” Int. J. Climatol., 38(14), 5077–5094. http://doi.org/10.1002/joc.5712
  • Garcet, J.P., Ordonez, A., Roosen, J., and Vanclooster, M. (2006). “Metamodeling: Theory, concepts and application to nitrate leaching modeling.” Ecol. model, 193(3–4), 629–644. http://doi.org/10.1016/j.ecolmodel.2005.08.045
  • Gerke, H.H., and Van Genuchten, M.T. (1993). “Evaluation of a first‐order water transfer term for variably saturated dual‐porosity flow models.” Water Resour Res, 29(4), 1225–1238. http://doi.org/10.1029/92WR02467
  • Ghommem, M., Presho, M., Calo, V.M., and Efendiev, Y. (2013). “Mode decomposition methods for flows in high-contrast porous media. Global–local approach.” J. Comput. Phys., 253, 226–238. http://doi.org/10.1016/j.jcp.2013.06.033
  • Gramacy, R.B., and Lee, H.K.H. (2008). “Bayesian treed Gaussian process models with an application to computer modeling.” J. Am. Stat. Assoc., 103(483), 1119–1130. http://doi.org/10.1198/016214508000000689
  • Gupta, R., and Sharma, P.K. (2023). “A review of groundwater-surface water interaction studies in India.” J. Hydrol, 621, 129592. https://doi.org/10.1016/j.jhydrol.2023.129592
  • Guzha, A.C. (2008). “Integrating surface and subsurface flow models of different spatial and temporal scales using potential coupling interfaces.” Utah State University, Logan, Utah.
  • Harvey, J.W., and Bencala, K.E. (1993). “The effect of streambed topography on surface‐subsurface water exchange in mountain catchments.” Water Resour Res, 29(1), 89–98. http://doi.org/10.1029/92WR01960
  • Hassan, S.T., Lubczynski, M.W., Niswonger, R.G., and Su, Z. (2014). “Surface–groundwater interactions in hard rocks in sardon catchment of western Spain: An integrated modeling approach.” J. Hydrol, 517, 390–410. http://doi.org/10.1016/j.jhydrol.2014.05.026
  • Hauswirth, S.M., Bierkens, M.F., Beijk, V., and Wanders, N. (2021). “The potential of data driven approaches for quantifying hydrological extremes.” Adv. Water Resour., 155, 104017. http://doi.org/10.1016/j.advwatres.2021.104017
  • Heppner, C.S., Ran, Q., VanderKwaak, J.E., and Loague, K. (2006). “Adding sediment transport to the integrated hydrology model (InHM): Development and testing.” Adv. Water Resour., 29(6), 930–943. http://doi.org/10.1016/j.advwatres.2005.08.003
  • Huang, G., and Yeh, G.T. (2009). “Comparative study of coupling approaches for surface water and subsurface interactions.” J. Hydrol. Eng., 14(5), 453–462. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000017
  • Huntington, J.L., and Niswonger, R.G. (2012). “Role of surface‐water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach.” Water Resour Res, 48(11), http://doi.org/10.1029/2012WR012319
  • Hussain, M.F., Barton, R.R., and Joshi, S.B. (2002). “Metamodeling: Radial basis functions, versus polynomials.” Eur. J. Oper. Res., 138(1), 142–154. http://doi.org/10.1016/S0377-2217(01)00076-5
  • Hu, L., Zhang, M., Yang, Z., Fan, Y., Li, J., Wang, H., Lubale, C., and Wang, J. (2020). “Estimating dewatering in an underground mine by using a 3D finite element model.” PLoS One, 15(10), e0239682. http://doi.org/10.1371/journal.pone.0239682
  • Jafari, T., Javadi, S., and Kiem, A.S. (2022). “Integrated simulation of surfacewater-groundwater (SW-GW) interactions using SWAT-MODFLOW (case study: Shiraz basin, Iran).” Riverine systems: Understanding the hydrological, Hydrosocial and Hydro-heritage Dynamics, Cham, Springer International Publishing, pp. 113–131. http://doi.org/10.1007/978-3-030-87067-6_7
  • Jafari, T., Kiem, A.S., Javadi, S., Nakamura, T., and Nishida, K. (2021). “Using insights from water isotopes to improve simulation of surface water-groundwater interactions.” Sci. Total Environ., 798, 149253. http://doi.org/10.1016/j.scitotenv.2021.149253
  • Jiang, J., Tang, S., Han, D., Fu, G., Solomatine, D., and Zheng, Y. (2020). “A comprehensive review on the design and optimization of surface water quality monitoring networks.” Environ. Mode. Software, 132, 104792. http://doi.org/10.1016/j.envsoft.2020.104792
  • Kennedy, M.C., and O’Hagan, A. (2001). “Bayesian calibration of computer models.” J. Royal Stat. Soc.: Series B (Stat. Methodol.), 63(3), 425–464. http://doi.org/10.1111/1467-9868.00294
  • Khu, S.T., Madsen, H., and Di Pierro, F. (2008). “Incorporating multiple observations for distributed hydrologic model calibration: An approach using a multi-objective evolutionary algorithm and clustering.” Adv. Water Resour., 31(10), 1387–1398. http://doi.org/10.1016/j.advwatres.2008.07.011
  • Kim, N.W., Chung, I.M., Won, Y.S., and Arnold, J.G. (2008). “Development and application of the integrated SWAT–MODFLOW model.” J. Hydrol, 356(1–2), 1–16. http://doi.org/10.1016/j.jhydrol.2008.02.024
  • Kollet, S.J., and Maxwell, R.M. (2006). “Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model.” Adv. Water Resour., 29(7), 945–958. http://doi.org/10.1016/j.advwatres.2005.08.006
  • Kollet, S.J., and Maxwell, R.M. (2008). “Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model.” Water Resour Res, 44(2), https://doi.org/10.1029/2007WR006004
  • Kourakos, G., and Mantoglou, A. (2009). “Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models.” Adv. Water Resour., 32(4), 507–521. http://doi.org/10.1016/j.advwatres.2009.01.001
  • Kumar, C.P. (2012). “Groundwater modeling software–capabilities and limitations.” IOSR J. Environ. Sci., Toxicol. Food Tech., 1(2), 46–57. http://doi.org/10.9790/2402-0124657
  • Laloy, E., Rogiers, B., Vrugt, J.A., Mallants, D., and Jacques, D. (2013). “Efficient posterior exploration of a high‐dimensional groundwater model from two‐stage Markov chain Monte Carlo simulation and polynomial chaos expansion.” Water Resour Res, 49(5), 2664–2682. http://doi.org/10.1002/wrcr.20226
  • Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., and Hughes, A. (2013). “Integrated environmental modeling: A vision and roadmap for the future.” Environ. Mode. Software, 39, 3–23. http://doi.org/10.1016/j.envsoft.2012.09.006
  • Larocque, M., and Broda, S. (2016). “Groundwater–surface water interactions in Canada.” Canadian Water Resour. J./Revue Canadienne Des Ressour. Hydriques, 41(4), 451–454. http://doi.org/10.1080/07011784.2016.1176537
  • Lejars, C., Daoudi, A., and Amichi, H. (2017). “The key role of supply chain actors in groundwater irrigation development in North Africa.” Hydrogeol J, 25(6), 1593–1606. http://doi.org/10.1007/s10040-017-1571-7
  • Le, P.V., Kumar, P., Valocchi, A.J., and Dang, H.V. (2015). “GPU-based high-performance computing for integrated surface–sub-surface flow modeling.” Environ. Mode. Software, 73, 1–13. http://doi.org/10.1016/j.envsoft.2015.07.015
  • Liao, H.S., Sampath, P.V., Curtis, Z.K., and Li, S.G. (2015). Hierarchical modeling and parameter estimation for a coupled groundwater–lake system. J. Hydrol. Eng., 20(11), 04015027. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001219
  • Liggett, J.E., Werner, A.D., and Simmons, C.T. (2012). “Influence of the first-order exchange coefficient on simulation of coupled surface–subsurface flow.” J. Hydrol, 414, 503–515. http://doi.org/10.1016/j.jhydrol.2011.11.028
  • Lodhi, A.G., Godrej, A.N., Sen, D., and Baran, A.A. (2020). “URUNME: A generic software for integrated environmental modeling.” Environ. Mode. Software, 134, 104737. http://doi.org/10.1016/j.envsoft.2020.104737
  • Manoj, S., Thirumurugan, M., and Elango, L. (2019). “Hydrogeochemical modelling to understand the surface water–groundwater interaction around a proposed uranium mining site.” J. Earth Syst. Sci., 128(3), 1–14. https://doi.org/10.1007/s12040-019-1078-9
  • Markstrom, S.L., Niswonger, R.G., Regan, R.S., Prudic, D.E., and Barlow, P.M. (2008). “GSFLOW-Coupled ground-water and surface-water FLOW model based on the integration of the Precipitation-runoff modeling system (PRMS) and the Modular ground-water flow model (MODFLOW-2005).” US Geol. Survey Tech. Methods, 6, 240.
  • Maxwell, R.M., Putti, M., Meyerhoff, S., Delfs, J.O., Ferguson, I.M., Ivanov, V., Kim, J., Kolditz, O., Kollet, S.J., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M.S., Shen, C., Sudicky, E.A., and Sulis, M. (2014). “Surface‐subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks.” Water Resour Res, 50(2), 1531–1549. http://doi.org/10.1002/2013WR013725
  • McMillan, H.K., Westerberg, I.K., and Krueger, T. (2018). “Hydrological data uncertainty and its implications.” Wiley Interdiscip. Rev: Water, 5(6), e1319. http://doi.org/10.1002/wat2.1319
  • McPhee, J., and Yeh, W.W.G. (2008). “Groundwater management using model reduction via empirical orthogonal functions.” J. Water Resour. Plann. Manage., 134(2), 161–170. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(161)
  • Milan, S.G., Roozbahani, A., and Banihabib, M.E. (2018). “Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources.” J. Hydrol, 566, 421–434. http://doi.org/10.1016/j.jhydrol.2018.08.078
  • Mirghani, B.Y., Mahinthakumar, K.G., Tryby, M.E., Ranjithan, R.S., and Zechman, E.M. (2009). “A parallel evolutionary strategy based simulation–optimization approach for solving groundwater source identification problems.” Adv. Water Resour., 32(9), 1373–1385. http://doi.org/10.1016/j.advwatres.2009.06.001
  • Najm, H.N. (2009). “Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics.” Annu Rev Fluid Mech, 41(1), 35–52. https://doi.org/10.1146/annurev.fluid.010908.165248
  • Niel, H., Paturel, J.E., and Servat, E. (2003). “Study of parameter stability of a lumped hydrologic model in a context of climatic variability.” J. Hydrol, 278(1–4), 213–230. http://doi.org/10.1016/S0022-1694(03)00158-6
  • Norouzi Khatiri, K., Niksokhan, M.H., Sarang, A., and Kamali, A. (2020). “Coupled simulation-optimization model for the management of groundwater resources by considering uncertainty and conflict resolution.” Water Resour. Manage, 34(11), 3585–3608. https://doi.org/10.1007/s11269-020-02637-x
  • Ntona, M.M., Busico, G., Mastrocicco, M., and Kazakis, N. (2022). “Modeling groundwater and surface water interaction: An overview of current status and future challenges.” Sci Tot Environ, 846, 157355. https://doi.org/10.1016/j.scitotenv.2022.157355
  • Ossiander, M.E., Peszynska, M., and Vasylkivska, V.S. (2014). “Conditional stochastic simulations of flow and transport with Karhunen-Loève expansions, stochastic Collocation, and sequential Gaussian simulation.” J. Appl. Math., 2014, 1–21. https://doi.org/10.1155/2014/652594
  • Panday, S., and Huyakorn, P.S. (2004). “A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow.” Adv. Water Resour., 27(4), 361–382. http://doi.org/10.1016/j.advwatres.2004.02.016
  • Paniconi, C., and Putti, M. (2015). “Physically based modeling in catchment hydrology at 50: Survey and outlook.” Water Resour Res, 51(9), 7090–7129. http://doi.org/10.1002/2015WR017780
  • Paniconi, C., and Wood, E.F. (1993). “A detailed model for simulation of catchment scale subsurface hydrologic processes.” Water Resour Res, 29(6), 1601–1620. http://doi.org/10.1029/92WR02333
  • Parsopoulos, K.E., and Vrahatis, M.N. (2010). Particle swarm optimization and intelligence: Advances and applications: Advances and applications. Parsopoulos, K. E., & Vrahatis, M. N., Eds., http://doi.org/10.4018/978-1-61520-666-7
  • Peralta, R.C., Forghani, A., and Fayad, H. (2014). “Multiobjective genetic algorithm conjunctive use optimization for production, cost, and energy with dynamic return flow.” J. Hydrol, 511, 776–785. http://doi.org/10.1016/j.jhydrol.2014.01.044
  • Pitz, C.F. (2016). “Predicted impacts of climate change on groundwater resources of Washington State.” Environmental Assessment Program, Washington State Department of Ecology, Olympia, WA.
  • Portoghese, I., Giannoccaro, G., Giordano, R., and Pagano, A. (2021). “Modeling the impacts of volumetric water pricing in irrigation districts with conjunctive use of surface and groundwater resources.” Agr. Water Manage., 244, 106561. http://doi.org/10.1016/j.agwat.2020.106561
  • Qu, Y., and Duffy, C.J. (2007). “A semidiscrete finite volume formulation for multiprocess watershed simulation.” Water Resour Res, 43(8), https://doi.org/10.1029/2006WR005752
  • Rafiei, V., Nejadhashemi, A.P., Mushtaq, S., Bailey, R.T., and An-Vo, D.A. (2022). “Groundwater-surface water interactions at wetland interface: Advancement in catchment system modeling.” Environ. Model. Softw., 152, 105407. http://doi.org/10.1016/j.envsoft.2022.105407
  • Raja, P., Krishnaraj, S., Selvaraj, G., Kumar, S., and Francis, V. (2021). “Hydrogeochemical investigations to assess groundwater and saline water interaction in coastal aquifers of the southeast coast, Tamil Nadu, India.” Environ. Sci. Pollut. R., 28(5), 5495–5519. https://doi.org/10.1007/s11356-020-10870-5
  • Rauch, W., Bertrand-Krajewski, J.L., Krebs, P., Mark, O., Schilling, W., Schütze, M., and Vanrolleghem, P.A. (2002). “Deterministic modeling of integrated urban drainage systems.” Water Sci. Technol., 45(3), 81–94. http://doi.org/10.2166/wst.2002.0059
  • Razavi, S., Tolson, B.A., and Burn, D.H. (2012). “Review of surrogate modeling in water resources.” Water Resour Res, 48(7), https://doi.org/10.1029/2011WR011527
  • Regis, R.G., and Shoemaker, C.A. (2007). “A stochastic radial basis function method for the global optimization of expensive functions.” INFORMS J Comput, 19(4), 497–509. http://doi.org/10.1287/ijoc.1060.0182
  • Robinson, T.D., Eldred, M.S., Willcox, K.E., and Haimes, R. (2008). “Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping.” Aiaa J., 46(11), 2814–2822. http://doi.org/10.2514/1.36043
  • Safavi, H.R., Darzi, F., and Mariño, M.A. (2010). “Simulation-optimization modeling of conjunctive use of surface water and groundwater.” Water Resour. Manage, 24(10), 1965–1988. https://doi.org/10.1007/s11269-009-9533-z
  • Safavi, H.R., and Falsafioun, M. (2017). “Conjunctive use of surface water and groundwater resources under deficit irrigation.” J. Irrig. Drain. Eng., 143(2), 05016012. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001122
  • Safavi, H.R., and Rezaei, F. (2015). “Conjunctive use of surface and ground water using fuzzy neural network and genetic algorithm.” Iranian J. Sci. Tech. Trans. Civil Eng, 39(C2), 365–377. http://doi.org/10.1016/j.agwat.2016.05.00
  • Said, A., Stevens, D.K., and Sehlke, G. (2005). “ESTIMATING WATER BUDGET in a REGIONAL AQUIFER USING HSPF‐MODFLOW INTEGRATED MODEL 1.” J Am Water Resour. Assoc., 41(1), 55–66. http://doi.org/10.1111/j.1752-1688.2005.tb03717.x
  • Saied, F., and Mahinthakumar, G. (1998). “Efficient parallel multigrid based solvers for large scale groundwater flow simulations.” Comp. Math. Appl., 35(7), 45–54. http://doi.org/10.1016/S0898-1221(98)00031-5
  • Saleem, M., and Jeelani, G. (2017). “Geochemical, isotopic and hydrological mass balance approaches to constrain the lake water–groundwater interaction in Dal lake, Kashmir Valley.” Environ. Earth Sci., 76(15), 1–18. https://doi.org/10.1007/s12665-017-6865-5
  • Sangalli, G. (2003). “Capturing small scales in elliptic problems using a residual-free bubbles finite element method.” Multiscale Model Simul, 1(3), 485–503. https://doi.org/10.1137/S1540345902411402
  • Scibek, J., Allen, D.M., Cannon, A.J., and Whitfield, P.H. (2007). “Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model.” J. Hydrol, 333(2–4), 165–181. http://doi.org/10.1016/j.jhydrol.2006.08.005
  • Seyoum, W.M., and Milewski, A.M. (2016). “Monitoring and comparison of terrestrial water storage changes in the northern high plains using GRACE and in-situ based integrated hydrologic model estimates.” Adv. Water Resour., 94, 31–44. http://doi.org/10.1016/j.advwatres.2016.04.014
  • Shahdany, S.M.H., Firoozfar, A., Maestre, J.M., Mallakpour, I., Taghvaeian, S., and Karimi, P. (2018). “Operational performance improvements in irrigation canals to overcome groundwater overexploitation.” Agr. Water Manage., 204, 234–246. http://doi.org/10.1016/j.agwat.2018.04.014
  • Shi, L., Zeng, L., Zhang, D., and Yang, J. (2012). “Multiscale-finite-element-based ensemble Kalman filter for large-scale groundwater flow.” J. Hydrol, 468, 22–34. http://doi.org/10.1016/j.jhydrol.2012.08.003
  • Siade, A.J., Putti, M., and Yeh, W.W.G. (2010). “Snapshot selection for groundwater model reduction using proper orthogonal decomposition.” Water Resour Res, 46(8), https://doi.org/10.1029/2009WR008792
  • Singh, A. (2014). “Simulation–optimization modeling for conjunctive water use management.” Agr. Water Manage., 141, 23–29. http://doi.org/10.1016/j.agwat.2014.04.003
  • Soleimani, S., Bozorg-Haddad, O., Boroomandnia, A., and Loáiciga, H.A. (2021). “A review of conjunctive GW-SW management by simulation–optimization tools.” J. Water Supply: Resear. Tech.-Aqua, 70(3), 239–256. http://doi.org/10.2166/aqua.2021.106
  • Sonkamble, S., Sahya, A., Jampani, M., Ahmed, S., and Amerasinghe, P. (2019). “Hydro-geophysical characterization and performance evaluation of natural wetlands in a semi-arid wastewater irrigated landscape.” Water Res., 148, 176–187. http://doi.org/10.1016/j.watres.2018.10.040
  • Sophocleous, M. (2002). “Interactions between groundwater and surface water: The state of the science.” Hydrogeol J, 10(1), 52–67. http://doi.org/10.1007/s10040-001-0170-8
  • Stefania, G.A., Rotiroti, M., Fumagalli, L., Simonetto, F., Capodaglio, P., Zanotti, C., and Bonomi, T. (2018). “Modeling groundwater/surface-water interactions in an alpine valley (the aosta plain, NW Italy): The effect of groundwater abstraction on surface-water resources.” Hydrogeol J, 26(1), 147–162. http://doi.org/10.1007/s10040-017-1633-x
  • Sulis, M., Meyerhoff, S.B., Paniconi, C., Maxwell, R.M., Putti, M., and Kollet, S.J. (2010). “A comparison of two physics-based numerical models for simulating surface water–groundwater interactions.” Adv. Water Resour., 33(4), 456–467. http://doi.org/10.1016/j.advwatres.2010.01.010
  • Swischuk, R., Mainini, L., Peherstorfer, B., and Willcox, K. (2019). “Projection-based model reduction: Formulations for physics-based machine learning.” Comput Fluids, 179, 704–717. http://doi.org/10.1016/j.compfluid.2018.07.021
  • Therrien, R., McLaren, R., Sudicky, E., and Panday, S.M. (2010). “A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport.” University of Waterloo, Waterloo, Ont.
  • Trauth, N., Schmidt, C., Maier, U., Vieweg, M., and Fleckenstein, J.H. (2013). “Coupled 3‐D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool‐riffle system.” Water Resour Res, 49(9), 5834–5850. http://doi.org/10.1002/wrcr.20442
  • Tripathi, M., Yadav, P.K., Chahar, B.R., and Dietrich, P. (2021). “A review on groundwater–surface water interaction highlighting the significance of streambed and aquifer properties on the exchanging flux.” Environ. Earth Sci., 80(17), 1–16. http://doi.org/10.1007/s12665-021-09897-9
  • Tsai, W.P., Chiang, Y.M., Huang, J.L., and Chang, F.J. (2016). “Exploring the mechanism of surface and ground water through data-driven techniques with sensitivity analysis for water resources management.” Water Resour. Manage, 30(13), 4789–4806. https://doi.org/10.1007/s11269-016-1453-0
  • Wang, C., Duan, Q., Gong, W., Ye, A., Di, Z., and Miao, C. (2014). “An evaluation of adaptive surrogate modeling-based optimization with two benchmark problems.” Environ. Mode. Software, 60, 167–179. http://doi.org/10.1016/j.envsoft.2014.05.026
  • Weill, S., Mouche, E., and Patin, J. (2009). “A generalized Richards equation for surface/subsurface flow modeling.” J. Hydrol, 366(1–4), 9–20. http://doi.org/10.1016/j.jhydrol.2008.12.007
  • Werner, A.D., Bakker, M., Post, V.E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., and Barry, D.A. (2013). “Seawater intrusion processes, investigation and management: Recent advances and future challenges.” Adv. Water Resour., 51, 3–26. http://doi.org/10.1016/j.advwatres.2012.03.004
  • Whelan, G., Kim, K., Pelton, M.A., Castleton, K.J., Laniak, G.F., Wolfe, K., and Galvin, M. (2014). “Design of a component-based integrated environmental modeling framework.” Environ. Mode. Software, 55, 1–24. http://doi.org/10.1016/j.envsoft.2014.01.016
  • Willcox, K., and Megretski, A. (2005). “Fourier series for accurate, stable, reduced-order models in large-scale linear applications.” Siam J. Sci. Comput., 26(3), 944–962. https://doi.org/10.1137/S1064827502418768
  • Winter, T.C. (1999). “Relation of streams, lakes, and wetlands to groundwater flow systems.” Hydrogeol J, 7(1), 28–45. http://doi.org/10.1007/s100400050178
  • Woessner, W.W. (2000). “Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought.” Groundwater, 38(3), 423–429. http://doi.org/10.1111/j.1745-6584.2000.tb00228.x
  • Wu, R., Chen, X., Hammond, G., Bisht, G., Song, X., Huang, M., and Ferre, T. (2021). “Coupling surface flow with high-performance subsurface reactive flow and transport code PFLOTRAN.” Environ. Mode. Software, 137, 104959. http://doi.org/10.1016/j.envsoft.2021.104959
  • Wu, M.C., and Hsieh, P.C. (2019). “Improved solutions to the linearized boussinesq equation with temporally varied rainfall recharge for a sloping aquifer.” Water (Switzerland), 11(4), 826. http://doi.org/10.3390/w11040826
  • Wu, B., Zheng, Y., Wu, X., Tian, Y., Han, F., Liu, J., and Zheng, C. (2015). “Optimizing water resources management in large river basins with integrated surface water‐groundwater modeling: A surrogate‐based approach.” Water Resour Res, 51(4), 2153–2173. http://doi.org/10.1002/2014WR016653
  • Wu, X., Zheng, Y., Wu, B., Tian, Y., Han, F., and Zheng, C. (2016). “Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach.” Agr. Water Manage., 163, 380–392. http://doi.org/10.1016/j.agwat.2015.08.022
  • Xian, Y., Jin, M., Liu, Y., and Si, A. (2017). “Impact of lateral flow on the transition from connected to disconnected stream–aquifer systems.” J. Hydrol, 548, 353–367. http://doi.org/10.1016/j.jhydrol.2017.03.011
  • Xian, Y., Jin, M., Zhan, H., and Liang, X. (2021). “On river‐aquifer exchange flow with irregular and semipervious bank.” Water Resour Res, 57(10), e2020WR028984. http://doi.org/10.1029/2020WR028984
  • Xu, Z., Godrej, A.N., and Grizzard, T.J. (2007). “The hydrological calibration and validation of a complexly-linked watershed–reservoir model for the Occoquan watershed, Virginia.” J. Hydrol, 345(3–4), 167–183. http://doi.org/10.1016/j.jhydrol.2007.07.015
  • Xu, X., Huang, G., Zhan, H., Qu, Z., and Huang, Q. (2012). “Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas.” J. Hydrol, 412, 170–181. http://doi.org/10.1016/j.jhydrol.2011.07.002
  • Yang, X., Hu, J., Ma, R., and Sun, Z. (2021). “Integrated hydrologic modeling of groundwater-surface water interactions in cold regions.” Front. Earth Sci., 9, 1099. http://doi.org/10.3389/feart.2021.721009
  • Yang, J., McMillan, H., and Zammit, C. (2017). “Modeling surface water–groundwater interaction in New Zealand: Model development and application.” Hydrol Process, 31(4), 925–934. http://doi.org/10.1002/hyp.11075
  • Yan, S., and Minsker, B. (2006). “Optimal groundwater remediation design using an adaptive neural network genetic algorithm.” Water Resour Res, 42(5), https://doi.org/10.1029/2005WR004303
  • Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., and Lee, K.K. (2011). “A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer.” J. Hydrol, 396(1–2), 128–138. http://doi.org/10.1016/j.jhydrol.2010.11.002
  • Young, P.C., and Ratto, M. (2011). “Statistical emulation of large linear dynamic models.” Technometrics, 53(1), 29–43. http://doi.org/10.1198/TECH.2010.07151
  • Yu, X., Bhatt, G., Duffy, C., and Shi, Y. (2013). “Parameterization for distributed watershed modeling using national data and evolutionary algorithm.” Comput Geosci, 58, 80–90. http://doi.org/10.1016/j.cageo.2013.04.025
  • Zektser, I.S., and Everett, L.G. (2004). “Groundwater resources of the world and their use.” Unesco, Paris.
  • Zhang, X. (2015). “Conjunctive surface water and groundwater management under climate change.” Front. Environ. Sci., 3, 59. https://doi.org/10.3389/fenvs.2015.00059
  • Zhang, W., Ren, J., Shen, Z., and Ma, B. (2022). “A water and heat coupling model for GW‐SW interaction considering nonuniform heat transfer effects of soil.” Groundwater, 61(5), 706–720. https://doi.org/10.1111/gwat.13272
  • Zhang, X., Srinivasan, R., and Van Liew, M. (2009). “Approximating SWAT model using artificial neural network and support vector machine 1.” JAWRA J. American Water Resour. Assoc, 45(2), 460–474. http://doi.org/10.1111/j.1752-1688.2009.00302.x
  • Zhang, B., Zeng, F., Wei, X., Khan, U., and Zou, Y. (2022). “Three-dimensional hierarchical hydrogeological static modeling for groundwater resource Assessment: A case study in the eastern Henan Plain, China.” Water (Switzerland), 14(10), 1651. http://doi.org/10.3390/w14101651
  • Zhou, J., Hu, B.X., Cheng, G., Wang, G., and Li, X. (2011). “Development of a three‐dimensional watershed modeling system for water cycle in the middle part of the Heihe rivershed, in the west of China.” Hydrol. Process, 25(12), 1964–1978. http://doi.org/10.1002/hyp.7952
  • Zhu, Y., Shi, L., Lin, L., Yang, J., and Ye, M. (2012). “A fully coupled numerical modeling for regional unsaturated–saturated water flow.” J. Hydrol, 475, 188–203. http://doi.org/10.1016/j.jhydrol.2012.09.048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.