125
Views
0
CrossRef citations to date
0
Altmetric
Articles

Boundary shear stress and apparent shear forces in compound channels with different floodplain widths

, &
Pages 58-67 | Received 05 Apr 2023, Accepted 09 Nov 2023, Published online: 18 Nov 2023

References

  • Ackerman, J.D., and Hoover, T.M. (2001). “Measurement of local bed shear stress in streams using a Preston-static tube.” Limnol. Oceanogr., 46(8), 2080–2087. doi:10.4319/lo.2001.46.8.2080
  • Atabay, S. (2001). “Stage discharge resistance and sediment transport relationships for flow in straight compound channels.” PhD thesis, Univ. of Birmingham, U.K.
  • Bijanvand, S., Mohammadi, M., and Parsaie, A. (2023). “Estimation of water’s surface elevation in compound channels with converging and diverging floodplains using soft computing techniques.” Water Supply, 23(4), 1684–1699. doi:10.2166/ws.2023.079
  • Chen, Z., Chen, Q., and Jiang, L. (2016). “Determination of apparent shear stress and its application in compound channels.” Procedia. Eng., 154, 459–466. doi:10.1016/j.proeng.2016.07.538
  • Chiu, C.-L., and Chiou, J.-D. (1986). “Structure of 3-D flow in rectangular open channels.” J. Hydraul. Eng., 112(11), 1050–1067. doi:10.1061/(ASCE)0733-9429(1986)112:11(1050)
  • Devi, K. and Khatua, K.K. (2016).“Prediction of depth averaged velocity and boundary shear distribution of a compound channel based on the mixing layer theory. Flow Meas. Instrum., 50, 147–157. doi:10.1016/j.flowmeasinst.2016.06.020
  • Devi, K., Khuntia, J.R., Das, B.S., and Khatua, K.K. (2021). “Analytical solution for depth-averaged velocity and boundary shear in a compound channel.” Proc. Inst. Civil Eng. Water Manage., 174(3), 143–158. doi:10.1680/jwama.18.00062
  • Guo, J., and Julien, P.Y. (2006). “Closure to “shear stress in smooth rectangular open-channel flows” by Junke Guo and Pierre Y. Julien.” J. Hydraul. Eng., 132(6), 631–632. doi:10.1061/(ASCE)0733-9429(2006)132:6(631)
  • Khodashenas, S.R., El Kadi Abderrezzak, K., and Paquier, A. (2008). “Boundary shear stress in open channel flow: A comparison among six methods.” J. Hydraul. Res., 46(5), 598–609. doi:10.3826/jhr.2008.3203
  • Knight, D.W., Demetriou, J.D., and Hamed, M.E. (1984). “Boundary shear in smooth rectangular channels.” J. Hydraul. Eng., 110(4), 405–422. doi:10.1061/(ASCE)0733-9429(1984)110:4(405)
  • Knight, D.W., and Mohammed, E.H. (1984). “Boundary shear stress in symmetric compound channels.” J. Hydraul. Eng., 110(10), 1412–1430. doi:10.1061/(ASCE)0733-9429(1984)110:10(1412)
  • Lashkar-Ara, B., Fathi-Moghadam, M., Shafai-Bajestan, M., and Jael, A. (2010). “Boundary shear stresses in smooth channels.” J. Food Agric. Environ., 8(1), 343–347.
  • Mahananda, M., and Reddy Hanmaiahgari, P. (2018). “Effect of aspect ratio on higher order moments of velocity fluctuations in hydraulically rough open channel flow.” E3S Web of Conferences, Lyon-Villeurbanne, France, 40.
  • Myers, W.R.C. (1978). “Momentum transfer in a compound channel.” J. Hydraul. Res., 16(2), 139–150. doi:10.1080/00221687809499626
  • Parsaie, A., Najafian, S., Omid, M.H., and Yonesi, H. (2017). “Stage discharge prediction in heterogeneous compound open channel roughness.” ISH J. Hydraul. Eng., 23(1), 49–56. doi:10.1080/09715010.2016.1235471
  • Parsaie, A., Najafian, S., and Shamsi, Z. (2016). “Predictive modeling of discharge of flow in compound open channel using radial basis neural network.” Model. Earth Syst. Environ., 2(3), 1–9. doi:10.1007/s40808-016-0207-6
  • Parsaie, A., Najafian, S., and Yonesi, H. (2016). “Flow discharge estimation in compound open channel using theoretical approaches.” Sustain. Water Resour. Manage., 2(4), 359–367. doi:10.1007/s40899-016-0063-6
  • Pezzinga, G. (1994). “Velocity distribution in compound channel flows by numerical modeling.” J. Hydraul. Eng., 120(10), 1176–1198. doi:10.1061/(ASCE)0733-9429(1994)120:10(1176)
  • Preston, J. (1954). “The determination of turbulent skin friction by means of pitot tubes.” Aeronaut. J., 58(518), 109–121. doi:10.1017/S0368393100097704
  • Pu, J.H. (2019). “Turbulent rectangular compound open channel flow study using multi-zonal approach.” Environ. Fluid Mech., 19(3), 785–800. doi:10.1007/s10652-018-09655-9
  • Rezaei, B. (2006). “Overbank flow in compound channels with prismatic and non-prismatic floodplains.” PhD thesis, Univ. of Birmingham, U.K.
  • Rodi, W. (2017). “Turbulence Modeling and Simulation in Hydraulics: A Historical Review.” J. Hydraul. Eng., 143(5), 03117001. doi:10.1061/(ASCE)HY.1943-7900.0001288
  • Seckin, G., Seckin, N., and Yurtal, R. (2006). “Boundary shear stress analysis in smooth rectangular channels.” Can. J. Civ. Eng., 33(3), 336–342. doi:10.1139/l05-110
  • Shiono, K., and Knight, D.W. (1991). “Turbulent open-channel flows with variable depth across the channel.” J Fluid Mech., 222(–1), 617–646. doi:10.1017/S0022112091001246
  • Singh, P.K., and Khatua, K.K. (2021). “Lateral dissemination of depth-averaged velocity, boundary shear stress and stage-discharge curves for compound channels.” ISH J. Hydraul. Eng., 27(3), 253–266. doi:10.1080/09715010.2018.1549962
  • Streeter, V., Wylie, E., and Bedford, K. (2002). Fluid mechanics. McGraw Hill, New York.
  • Tang, X., and Knight, D.W. (2008). “Lateral depth-averaged velocity distributions and bed shear in rectangular compound channels.” J. Hydraul. Eng., 134(9), 1337–1342. doi:10.1061/(ASCE)0733-9429(2008)134:9(1337)
  • Tominaga, A., and Nezu, I. (1991). “Turbulent structure in compound channel open channel flows.” J. Hydraul. Eng., 117(1), 21–41. doi:10.1061/(ASCE)0733-9429(1991)117:1(21)
  • Yang, S.Q., and Lim, S.Y. (1998). “Boundary shear stress distributions in smooth rectangular open channel flows.” Proc. Inst. Civil Eng. Water Marit. Eng., 130(3), 163–173. doi:10.1680/iwtme.1998.30975
  • Yang, K., Nie, R., Liu, X., and Cao, S. (2013). “Modeling depth-averaged velocity and boundary shear stress in rectangular compound channels with secondary flows.” J. Hydraul. Eng., 139(1), 76–83. doi:10.1061/(ASCE)HY.1943-7900.0000638
  • Yonesi, H.A., Parsaie, A., Arshia, A., and Shamsi, Z. (2022). “Discharge modeling in compound channels with non-prismatic floodplains using GMDH and MARS models.” Water Supply, 22(4), 4400–4421. doi:10.2166/ws.2022.058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.