52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Salvia officinalis, Lavandula angustifolia, and Mentha pulegium essential oils: insecticidal activities and feeding deterrence against Plodia interpunctella (Lepidoptera: Pyralidae)

, , , , , , , , & show all
Pages 16-33 | Received 05 Oct 2023, Accepted 14 Dec 2023, Published online: 17 Jan 2024

References

  • García-Lara, S., Serna Saldivar, S.O. (2016). In Encyclopedia of Food and Health. Elsevier Science.
  • Food and Agriculture Organization of the United Nations. (2022). About FAO. Food and Agriculture Organization of the United Nations. https://www.fao.org/about/en/ (accessed on September, 15th, 2023)
  • Rees, D. (2004). Insects of Stored Products. In Insects of Stored Products. CSIRO Publishing, Collingwood, Victoria, Australia.
  • Aulicky, R., Vendl, T. and Stejskal, V. (2019). Evaluation of contamination of packages containing cereal-fruit bars by eggs of the pest Indian meal moth (Plodia interpunctella, Lepidoptera) due to perforations in their polypropylene foil packaging. J. Food Sci. Technol. 56: 3293-3299. doi: 10.1007/s13197-019-03799-2
  • Vukajlović, F., Predojević, D., Miljković, K., Tanasković, S., Gvozdenac, S., Perišić, V., Grbović, F. and Pešić, A. (2019). Life history of Plodia interpunctella (Lepidoptera: Pyralidae) on dried fruits and nuts: Effects of macronutrients and secondary metabolites on immature stages. J. Stored Prod. Res. 83: 243-253 doi: 10.1016/j.jspr.2019.07.007
  • Freitas, A.C.O., Gigliolli, A.A.S., Caleffe, R.R.T. and Conte, H. (2020). Insecticidal effect of diatomaceous earth and dolomite powder against Corn weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae). Turk. J. Zool. 44: 490-497. doi: 10.3906/zoo-2005-34
  • Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P. and Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front. Pub. Health. 4: 148.
  • Budzinski, H. and Couderchet, M. (2018). Environmental and human health issues related to pesticides: from usage and environmental fate to impact. Environ. Sci. Pollut. Res. 25: 14277-14279. doi: 10.1007/s11356-018-1738-3
  • Pathak, V.M., Verma, V.K., Rawat, B.S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N. and Cunill, J.M. (2022). Current status of pesticide effects on the environment, human health and its eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 13.
  • Van Rie, J., McGaughey, W., Johnson, D., Barnett, B. and Van Mellaert, H. (1990). Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Sci. 247: 72-74. doi: 10.1126/science.2294593
  • Herrero, S., Oppert, B. and Ferré J. (2001). Different mechanisms of resistance to Bacillus thuringiensis toxins in the Indian meal moth. Appl. Environ. Microbiol. 67: 1085-1089. doi: 10.1128/AEM.67.3.1085-1089.2001
  • Sheng, Y., Benmati, M., Guendouzi, S., Benmati, H., Yuan, Y., Song, J., Xia, C. and Berkani, M. (2022). Latest eco-friendly approaches for pesticides decontamination using microorganisms and consortia microalgae: A comprehensive insights, challenges and perspectives. Chemosphere. 308: 136183. doi: 10.1016/j.chemosphere.2022.136183
  • Agence française de normalisation. (2000). Google Scholar. Scholar.google.com. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agence+Fran (accessed on September, 3th, 2023)
  • Ríos, J.-L. (2016). Essential Oils. Essential Oils in Food Preservation, Flavor and Safety, 3-10.
  • Bakkali, F., Averbeck, S., Averbeck, D. and Idaomar, M. (2008). Biological effects of essential oils - A review. Food Chem. Toxicol. 46: 446-475. doi: 10.1016/j.fct.2007.09.106
  • Ebadollahi, A., Ziaee, M. and Palla, F. (2020). Essential oils extracted from different species of the lamiaceae plant family as prospective bioagents against several detrimental pests. Mol. 25: 1556. doi: 10.3390/molecules25071556
  • Heidarian, M., Masoumi, S.-M. and Asadi, M. (2022). Chemical analyses of two plant essential oils and their effects on functional response of Habrobracon hebetor Say to Sitotroga cerealella Olivier larvae. Acta Biol. Szeged. 2: 211-220. doi: 10.14232/abs.2021.2.211-220
  • Sowmya, M., Bindhu, O.S., Subaharan, K., Kumar, V., Senthoorraja, R., Varshney, R. and NBV, C.R. (2023). Toxicity, Ovipositional Behaviour and Electrophysiological Response of Rice Moth Corcyra cephalonica (Stainton) Adults to Essential Oils. Ind. J. Entomol.
  • Corzo, F.L., Traverso, L., Sterkel, M., Benavente, A.M., Ajmat, M.T. and Ons, S. (2020). Plodia interpunctella (Lepidoptera: Pyralidae): Intoxication with essential oils isolated from Lippia turbinata (Griseb.) and analysis of neuropeptides and neuropeptide receptors, putative targets for pest control. Arch. Insect Biochem. Physiol. 104: e21684. doi: 10.1002/arch.21684
  • Nenaah, G.E. (2013). Chemical composition, insecticidal and repellence activities of essential oils of three Achillea species against the Khapra beetle (Coleoptera: Dermestidae). J. Pest Sci. 87: 273-283. doi: 10.1007/s10340-013-0547-1
  • Tripathi, A.K., Prajapati, V. and Kumar, S. (2003). Bioactivities of L-carvone, D-carvone and dihydrocarvone toward three stored product beetles. J. Econ. Entomol. 96: 1594-1601. doi: 10.1093/jee/96.5.1594
  • Gourich, A.A., Bencheikh, N., Bouhrim, M., Regragui, M., Rhafouri, R., Drioiche, A., Asbabou, A., Remok, F., Mouradi, A., Addi, M., Hano, C. and Zair, T. (2022). Comparative analysis of the chemical composition and antimicrobial activity of four Moroccan north middle atlas medicinal plants’ essential oils: Rosmarinus officinalis L., Mentha pulegium L., Salvia officinalis L. and Thymus zygis subsp. gracilis (Boiss.) R. Morales. Chem. 4: 1775-1788.
  • Danh, L.T., Han, L.N., Triet, N.D.A., Zhao, J., Mammucari, R. and Foster, N. (2012). Comparison of chemical composition, antioxidant and antimicrobial activity of lavender (Lavandula angustifolia L.) essential oils extracted by supercritical CO2, hexane and hydrodistillation. Food Bioprocess. Technol. 6: 3481-3489. doi: 10.1007/s11947-012-1026-z
  • Sałata, A., Buczkowska, H. and Nurzyńska-Wierdak, R. (2020). Yield, essential oil content and quality performance of Lavandula angustifolia leaves, as affected by supplementary irrigation and drying methods. J. Agric. 10: 590.
  • Barra, A. (2009). Factors affecting chemical variability of essential oils: a review of recent developments. Nat. Prod. Commun. 4(8): 1147-1154.
  • El Euch, S.K., Hassine, D.B., Cazaux, S., Bouzouita, N. and Bouajila, J. (2019). Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. South Afr. J. Bot. 120: 253-260. doi: 10.1016/j.sajb.2018.07.010
  • Mot, M.-D., Gavrilaș, S., Lupitu, A.I., Moisa, C., Chambre, D., Tit, D.M., Bogdan, M.A., Bodescu, A.-M., Copolovici, L., Copolovici, D.M. and Bungau, S.G. (2022). Salvia officinalis L. essential oil: characterization, antioxidant properties and the effects of aromatherapy in adult patients. Antioxidants. 11: 808 doi: 10.3390/antiox11050808
  • Khiya, Z., Hayani, M., Gamar, A., Kharchouf, S., Amine, S., Berrekhis, F., Bouzoubae, A., Zair, T. and El Hilali, F. (2019). Valorization of the Salvia officinalis L. of the Morocco bioactive extracts: Phytochemistry, antioxidant activity and corrosion inhibition. J. King Saud Univ. Sci. 31: 322-335. doi: 10.1016/j.jksus.2018.11.008
  • Zerkani, H., Kharchoufa, L., Tagnaout, I., Fakchich, J., Bouhrim, M., Amalich, S., Addi, M., Hano, C., Cruz-Martins, N., Bouharroud, R. and Zair, T. (2022). Chemical composition and bioinsecticidal effects of Thymus zygis L., Salvia officinalis L. and Mentha suaveolens Ehrh. essential oils on medfly Ceratitis capitata and tomato leaf miner Tuta absoluta. Plants 11: 3084. doi: 10.3390/plants11223084
  • Détár, E., Németh, É. Z., Gosztola, B., Demján, I. and Pluhár, Z. (2020). Effects of variety and growth year on the essential oil properties of lavender (Lavandula angustifolia Mill.) and lavandin (Lavandula x intermedia Emeric ex Loisel.). Biochem. Syst. Ecol. 90: 104020. doi: 10.1016/j.bse.2020.104020
  • Pokajewicz, K., Białoń, M., Svydenko, L., Fedin, R. and Hudz, N. (2021). Chemical composition of the essential oil of the new cultivars of Lavandula angustifolia Mill. bred in Ukraine. Molecules 26: 5681. doi: 10.3390/molecules26185681
  • Xu, Y., Ma, L., Liu, F., Yao, L., Wang, W., Yang, S. and Han, T. (2023). Lavender essential oil fractions alleviate sleep disorders induced by the combination of anxiety and caffeine in mice. J. Ethnopharmacol. 302: 115868. doi: 10.1016/j.jep.2022.115868
  • Białoń, M., Krzyśko-Łupicka, T., Nowakowska-Bogdan, E. and Wieczorek, P.P. (2019). Chemical composition of two different lavender essential oils and their effect on facial skin microbiota. Molecules. 24: 3270. doi: 10.3390/molecules24183270
  • Oualdi, I., Elfazazi, K., Azzouzi, H., Oussaid, A. and Touzani R. (2023). Chemical composition and antimicrobial properties of Moroccan Mentha pulegium L. essential oil. Mater. Today: Proc. 72: 3768-3774.
  • Mohammadhosseini, M., Venditti, A. and Mahdavi, B. (2021). Characterization of essential oils and volatiles from the leaves of Mentha pulegium L. (Lamiaceae) using microwave-assisted hydrodistillation (MAHD) and headspace solid phase microextraction (HS-SPME) in combination with GC-MS. Nat. Prod. Res. 37: 338-342. doi: 10.1080/14786419.2021.1960523
  • Białoń, M., Krzyśko-Łupicka, T., Nowakowska-Bogdan, E. and Wieczorek, P.P. (2019). Chemical composition of two different lavender essential oils and their effect on facial skin microbiota. Molecules. 24: 3270. doi: 10.3390/molecules24183270
  • Papanikolaou, N.E., Kavallieratos, N.G., Iliopoulos, V., Evergetis, E., Skourti, A., Nika, E.P. and Haroutounian, S.A. (2022). Essential oil coating: mediterranean culinary plants as grain protectants against larvae and adults of Tribolium castaneum and Trogoderma granarium. Insects. 13: 165. doi: 10.3390/insects13020165
  • Song, C., Zhao, J., Zheng, R., Hao, C. and Yan, X. (2022). Chemical composition and bioactivities of thirteen non-host plant essential oils against Plutella xylostella L. (Lepidoptera: Plutellidae). J. Asia Pac. Entomol. 25: 101881. doi: 10.1016/j.aspen.2022.101881
  • Pang, X., Feng, Y.-X., Qi, X.-J., Xi, C. and Du, S.-S. (2021). Acute toxicity and repellent activity of essential oil from Atalantia guillauminii Swingle fruits and its main monoterpenes against two stored product insects. Int. J. Food Prop. 24: 304-315. doi: 10.1080/10942912.2021.1876088
  • Achimón, F., Peschiutta, M.L., Brito, V.D., Beato, M., Pizzolitto, R.P., Zygadlo, J.A. and Zunino, M.P. (2022). Exploring contact toxicity of essential oils against Sitophilus zeamais through a meta-analysis approach. Plants 11: 3070. doi: 10.3390/plants11223070
  • Upadhyay, N., Dwivedy, A.K., Kumar, M., Prakash, B. and Dubey, N.K. (2018). Essential oils as eco-friendly alternatives to synthetic pesticides for the control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Essent. Oil-Bear. Plants 21: 282-297. doi: 10.1080/0972060X.2018.1459875
  • Perry, A.S., Yamamoto, I., Ishaaya, I. and Perry, R. (1998). Methods of testing chemicals on insects. in insecticides in agriculture and environment (pp. 12-13). Springer Berlin Heidelberg.
  • Lee, M.J., Lee, S.E., Kang, M.S., Park, B., Lee, S.G. and Lee, H.S. (2018). Acaricidal and insecticidal properties of Coriandrum sativum oils and their major constituents extracted by three different methods against stored product pests. Appl. Biol. Chem. 61(5): 481-488. doi: 10.1007/s13765-018-0379-z
  • Lazarević, J., Kostić, I., Šešlija Jovanović, D., Ćalić, D., Milanović, S. and Kostić, M. (2022). Pure camphor and a thujone-camphor mixture as eco-friendly antifeedants against larvae and adults of the colorado potato beetle. Plants. 11: 3587. doi: 10.3390/plants11243587
  • Bendifallah, L., Tabli, R., Khelladi, H., Hamoudi-Belarbi, L. and Hamoudi, S. (2020). Biological Activity of the Mentha spicata L. and Salvia officinalis L. (Lamiaceae) Essential Oils on Sytophilus granarius L. and Tribolium confusum Jac. Du Val. infested stored wheat. Biol. Life Sci. Forum. 4(1): 108. The 1st International Electronic Conference on Plant Science.
  • Abdellaoui, K., Miladi, M., Boughattas, I., Acheuk, F., Chaira, N. and Ben Halima-Kamel, M. (2017). Chemical composition, toxicity and acetylcholinesterase inhibitory activity of Salvia officinalis essential oils against Tribolium confusum. J. Entomol. Zoo. Stud. 5: 1761-1768
  • Zimmermann, R.C., Aragão, C.E.deC., Araújo, P.J.P.de, Benatto, A., Chaaban, A., Martins, C.E.N., Amaral, W.do, Cipriano, R.R. and Zawadneak, M.A.C. (2021). Insecticide activity and toxicity of essential oils against two stored-product insects. Crop Protect. 144: 105575. doi: 10.1016/j.cropro.2021.105575
  • Allahvaisi, S., Talebi Jahromi, K., Imani, S. and Khanjani, M. (2017). Contact toxicity of ploy lactic acid nanofibers loaded with two essential oils against Plodia interpunctella hub. (Lepidoptera: pyralidae). J. Biopest. 10: 50-59. doi: 10.57182/jbiopestic.10.2.50-59
  • Nardjis, S., Samir, T. and Noureddine, S. (2021). Toxicity and physiological effects of essential Oil from Lavandula angustifolia (M.) against Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) adults. J. Entomol. Res. 45: 929-936. doi: 10.5958/0974-4576.2021.00144.4
  • Lima, A., Arruda, F., Medeiros, J., Baptista, J., Madruga, J. and Lima, E. (2021). Variations in essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from different geographical origins- a critical review. Appl. Sci. 11: 11097. doi: 10.3390/app112311097
  • Shojaaddini, M., Moharramipour, S. and Sahaf, B. (2008). Fumigant toxicity of essential oil from Carum Copticum against Indian meal moth, Plodia Interpunctella. J. Plant Prot. Res., 48: 411-419 doi: 10.2478/v10045-008-0050-5
  • Hengzhi, H., Ping, N., Jianghua, L., Juan, L., Xia, L. and Anaerguli, A. (2022). Bioactivities of essential oils of lavender and basil against larvae of Plodia interpunctella. 2022. J. Chin. Cereals Oils Assoc. 11: 199-205.
  • Cheraghi Niroumand, M., Farzaei, M.H., Karimpour Razkenari, E., Amin, G., Khanavi, M., Akbarzadeh, T. and Shams-Ardekani, M.R. (2016). An evidence-based review on medicinal plants used as insecticide and insect repellent in traditional iranian medicine. Iran. Red. Crescent. Med. J. 18: e22361. doi: 10.5812/ircmj.22361
  • Lougraimzi, H., El Iraqui, S., Bouaichi, A., Gouit, S., Achbani, E.H. and Fadli, M. (2018). Insecticidal effect of essential oil and powder of Mentha pulegium L. leaves against Sitophilus oryzae (Linnaeus, 1763) and Tribolium castaneum (Herbst, 1797) (Coleoptera: Curculionidae, Tenebrionidae), the main pests of stored wheat in Morocco. Pol. J. Entomol. 87: 263-278. doi: 10.2478/pjen-2018-0018
  • Brahmi, F., Abdenour, A., Bruno, M., Silvia, P., Alessandra, P., Danilo, F., Drifa, Y.-G., Fahmi, E.M., Khodir, M. and Mohamed, C. (2016). Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria. Ind. Crops Prod. 88: 96-105. doi: 10.1016/j.indcrop.2016.03.002
  • Behi, F., Bachrouch, O. and Boukhris-Bouhachem, S. (2019). Insecticidal activities of Mentha pulegium L. and Pistacia lentiscus L., essential oils against two citrus aphids Aphis spiraecola Patch and Aphis gossypii Glover. J. Essent. Oil-Bear. Plants. 22: 516-525. doi: 10.1080/0972060X.2019.1611483
  • Stejskal, V., Vendl, T., Aulicky, R. and Athanassiou, C. (2021). Synthetic and natural insecticides: gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects. 12: 590. doi: 10.3390/insects12070590
  • Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. B., Nainu, F. and Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. 13: 100217.
  • Purrington, C.B. (2003). Secondary products. Antifeedant Substances in Plants. In Encyclopedia of Applied Plant Sciences, pp. 1140-1145.
  • Isman, M. (2002). Insect antifeedants. Pestic. Outlook. 13: 152-157. doi: 10.1039/b206507j
  • Tine, S., Sayada, N., Tine-Djebbar, F. and Soltani, N. (2021). Chemical composition and activity of Lavandula Angustifolia essential oil against stored-product pest Rhyzopertha Dominica (F.) (Coleoptera: Bostrichidae): fumigant toxicity, food intake and digestive enzymes. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (2nd Edition), pp. 1491-1500.
  • González-Coloma, A., Martín-Benito, D., Mohamed, N., García-Vallejo, M.C. and Soria, A.C. (2006). Antifeedant effects and chemical composition of essential oils from different populations of Lavandula luisieri L. Biochem. Syst. Ecol. 34: 609-616. doi: 10.1016/j.bse.2006.02.006
  • Gokulakrishman, J., Krishnappa, K. and Kuppuswamy, E. (2012). Certain plant essential oils against antifeedant activity of Spodoptera litura (Fab.), Helicoverpa armigera (Hub.) and Achaea janata (Linn.) (Lepidoptera: Noctuidae). Int. J. Curr. Life Sci. 2: 5-11.
  • Herraiz, D., Santana, O., Cabrera, R., González-Coloma, A., Sánchez-Vioque, R., De los Mozos-Pascual, M., Rodríguez-Conde, M.F., Laserna-Ruiz, I. and Usano-Alemany, J. (2012). Perfil químico y biológico de aceites esenciales de plantas aromáticas de interés agro-industrial en Castilla-La Mancha (España). Grasas Y Aceites. 63: 214-222. doi: 10.3989/gya.129611
  • Santana, O. andrés, M.F., Sanz, J., Errahmani, N., Abdeslam, L. and González-Coloma, A. (2014). Valorization of essential oils from moroccan aromatic plants. Nat. Prod. Commun. 9: 1109-1114.
  • Saeidi, K. and Hassanpour, B. (2014). Efficiency of Mentha piperita L. and Mentha pulegium L. essential oils on nutritional indices of Plodia interpunctella Hübner (Lepidoptera: Pyralidae). J. Entomol. Acarol. Res. 46: 715. doi: 10.4081/jear.2014.715
  • Valcárcel, F., Olmeda, A.S., González, M.G., Andrés, M.F., Navarro-Rocha, J. and González-Coloma, A. (2021). Acaricidal and insect antifeedant effects of essential oils from selected aromatic plants and their main components. Front. Agron. 3: 662802. doi: 10.3389/fagro.2021.662802

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.