13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of antidepressant-like effects of five herbal essential oils on mice with reserpine-induced depression

, , , , , , , , , & show all
Pages 383-396 | Received 27 Mar 2023, Accepted 27 Dec 2023, Published online: 18 Mar 2024

References

  • Preljevic, V.T., Østhus, T.B.H., Os, I., Sandvik, L., Opjordsmoen, S., Nordhus, I.H., & Dammen, T. (2013). Anxiety and depressive disorders in dialysis patients: association to health-related quality of life and mortality. General Hospital Psychiatry. 35(6): 619-624. doi: 10.1016/j.genhosppsych.2013.05.006
  • Rahman, M.M., Islam, F., Parvez, A., Azad, M.A.K., Ashraf, G.M., Ullah, M.F., & Ahmed, M. (2022). Citrus limon L. (lemon) seed extract shows neuro-modulatory activity in an in vivo thiopental-sodium sleep model by reducing the sleep onset and enhancing the sleep duration. Journal of Integrative Neuroscience,.21(1). doi: 10.31083/j.jin2101042
  • Islam, F., Mitra, S., Nafady, M.H., Rahman, M.T., Tirth, V., Akter, A., Emran, T.B., Mohamed, A.A.R., Algahtani, A. and El-Kholy, S.S. (2022). Neuropharmacological and antidiabetic potential of Lannea coromandelica (houtt.) merr. Leaves extract: an experimental analysis. Evidence-Based Complementary and Alternative Medicine. 2022.
  • Duevel, J.A., Hasemann, L., Peña-Longobardo, L.M., Rodríguez-Sánchez, B., Aranda-Reneo, I., Oliva-Moreno, J., López-Bastida, J. and Greiner, W. 2020. (2020). Considering the societal perspective in economic evaluations: a systematic review in the case of depression. Health Economics Review. 10(1): 32. doi: 10.1186/s13561-020-00288-7
  • Akter, A., Islam, F., Bepary, S., Al-Amin, M., Begh, M.Z.A., Islam, M.A.F.U., Ashraf, G.M., Baeesa, S.S. and Ullah, M.F. (2022). CNS depressant activities of Averrhoa carambola leaves extract in thiopental-sodium model of Swiss albino mice: implication for neuro-modulatory properties. Biologia. 77(5): 1337-1346. doi: 10.1007/s11756-022-01057-z
  • Shenal, B.V., Harrison, D.W., & Demaree, H.A. (2003). The neuropsychology of depression: A literature review and preliminary model. Neuropsychology Review. 13(1): 33-42. doi: 10.1023/A:1022300622902
  • Kennedy, S.H., Andersen, H.F., & Thase, M.E. (2009). Escitalopram in the treatment of major depressive disorder: A meta-analysis. Current Medical Research and Opinion. 25(1): 161-175. doi: 10.1185/03007990802622726
  • Sánchez-Vidaña, D.I., Ngai, S.P.-C., He, W., Chow, J.K.-W., Lau, B.W.-M., & Tsang, H.W.-H. (2017). The effectiveness of aromatherapy for depressive symptoms: A systematic review. Evidence-Based Complementary and Alternative Medicine. 2017.
  • Xu, A., Chen, X., Jiang, J., Chen, Z., & Ding, P. (2016). Chemical constituents from Jasminum elongatum. Zhong yao cai= Zhongyaocai= Journal of Chinese Medicinal Materials. 39(8): 1779-1781.
  • Rahman, M.M., Dhar, P.S., Anika, F., Ahmed, L., Islam, M.R., Sultana, N.A., Cavalu, S., Pop, O. and Rauf, A. (2022). Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomedicine & pharmacotherapy. 152: 113217-113217. doi: 10.1016/j.biopha.2022.113217
  • Islam, F., Khadija, J.F., Harun-Or-Rashid, M., Rahaman, M.S., Nafady, M.H., Islam, M.R., Akter, A., Emran, T.B., Wilairatana, P. and Mubarak, M.S. (2022). Bioactive Compounds and Their Derivatives: An Insight into Prospective Phytotherapeutic Approach against Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity. 2022.
  • Mitra, S., Lami, M.S., Uddin, T.M., Das, R., Islam, F., Anjum, J., Hossain, M.J. and Emran, T.B. (2022). Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomedicine & Pharmacotherapy. 150.
  • Rahman, M.M., Islam, M.R., Shohag, S., Hossain, M.E., Rahaman, M.S., Islam, F., Ahmed, M., Mitra, S., Khandaker, M.U., Idris, A.M. and Chidambaram, K. (2022). The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules. 27(5).
  • Rahman, M.M., Bibi, S., Rahaman, M.S., Rahman, F., Islam, F., Khan, M.S., Hasan, M.M., Parvez, A., Hossain, M.A., Maeesa, S.K. and Islam, M.R. (2022). Natural therapeutics and nutraceuticalsfor lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomedicine & pharmacotherapy. 150: 113041-113041. doi: 10.1016/j.biopha.2022.113041
  • Farag, M.A., & Al-Mahdy, D.A. (2013). Comparative study of the chemical composition and biological activities of Magnolia grandiflora and Magnolia virginiana flower essential oils. Natural Product Research. 27(12): 1091-1097. doi: 10.1080/14786419.2012.696256
  • Hyeon, H., Hyun, H.B., Go, B., Kim, S.C., Jung, Y.-H., & Ham, Y.-M. (2022). Profiles of essential oils and correlations with phenolic acids and primary metabolites in flower buds of Magnolia heptapeta and Magnolia denudata var. purpurascens. Molecules. 27(1).
  • Shi, S., Yan, H., Chen, Y., Liu, Y., Zhang, X., Xie, Y., Xu, J., Wu, L., Chen, K., Shen, X. and Ren, P. (2020). Pharmacokinetic study of precisely representative antidepressant, prokinetic, anti-inflammatory and anti-oxidative compounds from Fructus aurantii and Magnolia Bark. Chemico-Biological Interactions. 315: 108851. doi: 10.1016/j.cbi.2019.108851
  • Boskabady, M.H., Shafei, M.N., Saberi, Z., & Amini, S. (2011). Pharmacological effects of Rosa damascena. Iranian Journal of Basic Medical Sciences. 14(4): 295.
  • Nayebi, N., Khalili, N., Kamalinejad, M., & Emtiazy, M. (2017). A systematic review of the efficacy and safety of Rosa damascena Mill. with an overview on its phytopharmacological properties. Complementary Therapies in Medicine. 34: 129-140. doi: 10.1016/j.ctim.2017.08.014
  • Oukerrou, M.A., Tilaoui, M., Mouse, H.A., Leouifoudi, I., Jaafari, A., & Zyad, A. (2017). Chemical composition and cytotoxic and antibacterial activities of the essential oil of Aloysia citriodora palau grown in Morocco. Advances in Pharmacological Sciences. 2017. doi: 10.1155/2017/7801924
  • Singh, R., Nath, G., Goel, R., & Bhattacharya, S. (1998). Pharmacological actions of Abies pindrow Royle leaf. Indian Journal of Experimental Biology. 36(2): 187-191.
  • Tang, M., Ai, Y., Zhu, S., Song, N., Xu, X., Liang, L., Rong, B., Zheng, X., Zhang, L. and He, T. (2021). Antidepressant-like effect of essential oils from Citrus reticulata in reserpine-induced depressive mouse. Natural Product Communications. 17(5).
  • Liu, J., Garza, J.C., Bronner, J., Kim, C.S., Zhang, W., & Lu, X.-Y. (2010). Acute administration of leptin produces anxiolytic-like effects: a comparison with fluoxetine. Psychopharmacology. 207(4): 535-545. doi: 10.1007/s00213-009-1684-3
  • Zhang, B., Wang, P.P., Hu, K.L., Li, L.N., Yu, X., Lu, Y., & Chang, H.S. (2019). Antidepressant-like effect and mechanism of action of honokiol on the mouse lipopolysaccharide (LPS) depression model. Molecules. 24(11).
  • Jiang, X., Yi, S., Liu, Q., Su, D., Li, L., Xiao, C., & Zhang, J. (2022). Asperosaponin VI ameliorates the CMS-induced depressive-like behaviors by inducing a neuroprotective microglial phenotype in hippocampus via PPAR-γ pathway. J. Neuroinflammation. 19(1): 115. doi: 10.1186/s12974-022-02478-y
  • Cryan, J.F., Mombereau, C., & Vassout, A. (2005). The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 29(4-5): 571-625. doi: 10.1016/j.neubiorev.2005.03.009
  • Abbasi-Maleki, S., Kadkhoda, Z., & Taghizad-Farid, R. (2020). The antidepressant-like effects of Origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming test. Journal of Traditional and Complementary Medicine. 10(4): 327-335. doi: 10.1016/j.jtcme.2019.01.003
  • Monteiro, Á.B., de Souza Rodrigues, C.K., do Nascimento, E.P., dos Santos Sales, V., de Araújo Delmondes, G., da Costa, M.H.N., de Oliveira, V.A.P., de Morais, L.P., Boligon, A.A., Barbosa, R. and da Costa, J.G.M. (2020). Anxiolytic and antidepressant-like effects of Annona coriacea (Mart.) and caffeic acid in mice. Food and Chemical Toxicology. 136: 111049. doi: 10.1016/j.fct.2019.111049
  • Tian, D.D., Wang, M., Liu, A., Gao, M.R., Qiu, C., Yu, W., Wang, W.J., Zhang, K., Yang, L., Jia, Y.Y. and Yang, C.B. (2021). Antidepressant effect of paeoniflorin is through inhibiting pyroptosis CASP-11/GSDMD pathway. Molecular Neurobiology. 58(2): 761-776. doi: 10.1007/s12035-020-02144-5
  • Wang, G., Lei, C., Tian, Y., Wang, Y., Zhang, L., & Zhang, R. (2019). Rb1, the primary active ingredient in Panax ginseng CA Meyer, exerts antidepressant-like effects via the BDNF–TrkB–CREB pathway. Frontiers in Pharmacology. 1034.
  • Park, B.K., Kim, N.S., Kim, Y.R., Seo, C.S. and Lee, M.Y. (2020). Antidepressant and anti-neuroinflammatory effects of Bangpungtongsung-San. Frontiers in pharmacology, 958.
  • Li, G., Yang, J., Wang, X., Zhou, C., Zheng, X., & Lin, W. (2020). Effects of EGCG on depression-related behavior and serotonin concentration in a rat model of chronic unpredictable mild stress. Food & Function. 11(10): 8780-8787. doi: 10.1039/D0FO00524J
  • Wang, Y., Wang, Y., Sun, R., Wu, X., Chu, X., Zhou, S., Hu, X., Gao, L. and Kong, Q. (2018). The treatment value of IL-1β monoclonal antibody under the targeting location of alpha-methyl-L-tryptophan and superparamagnetic iron oxide nanoparticles in an acute temporal lobe epilepsy model. Journal of Translational Medicine. 16(1): 1-13. doi: 10.1186/s12967-017-1374-6
  • García-García, L., Shiha, A.A., de la Rosa, R.F., Delgado, M., Silván, Á., Bascuñana, P., Bankstahl, J.P., Gomez, F. and Pozo, M.A. (2017). Metyrapone prevents brain damage induced by status epilepticus in the rat lithium-pilocarpine model. Neuropharmacology. 123: 261-273. doi: 10.1016/j.neuropharm.2017.05.007
  • Luo, Y., Xiao, Q., Wang, J., Jiang, L., Hu, M., Jiang, Y., Tang, J., Liang, X., Qi, Y., Dou, X. and Zhang, Y. (2019). Running exercise protects oligodendrocytes in the medial prefrontal cortex in chronic unpredictable stress rat model. Translational psychiatry. 9(1): 1-11. doi: 10.1038/s41398-019-0662-8
  • Ramírez-Rodríguez, G.B., Palacios-Cabriales, D.M., Ortiz-López, L., Estrada-Camarena, E.M., & Vega-Rivera, N.M. (2020). Melatonin modulates dendrite maturation and complexity in the dorsal-and ventral-dentate gyrus concomitantly with its antidepressant-like effect in male balb/c mice. International Journal of Molecular Sciences. 21(5): 1724. doi: 10.3390/ijms21051724
  • Odaira, T., Nakagawasai, O., Takahashi, K., Nemoto, W., Sakuma, W., Lin, J.-R., & Tan-No, K. (2019). Mechanisms underpinning AMP-activated protein kinase-related effects on behavior and hippocampal neurogenesis in an animal model of depression. Neuropharmacology. 150: 121-133. doi: 10.1016/j.neuropharm.2019.03.026
  • Chen, S., Guo, W., Qi, X., Zhou, J., Liu, Z., & Cheng, Y. (2019). Natural alkaloids from lotus plumule ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation. Food & Function. 10(9): 6062-6073. doi: 10.1039/C9FO01092K
  • Zhang, J.J., Gao, T.T., Wang, Y., Wang, J.L., Guan, W., Wang, Y.J., Wang, C.N., Liu, J.F. and Jiang, B. (2019). Andrographolide exerts significant antidepressant-like effects involving the hippocampal BDNF system in mice. International Journal of Neuro-psychopharmacology. 22(9): 585-600.
  • Zhang, X., Yin, Y., Yue, L., & Gong, L. (2019). Selective serotonin reuptake inhibitors aggravate depression-associated dry eye via activating the NF-κB pathway. Investigative Ophthalmology & Visual Science. 60(1): 407-419. doi: 10.1167/iovs.18-25572
  • Sun, L., Verkaik-Schakel, R.-N., Biber, K., Plösch, T., & Serchov, T. (2021). Antidepressant treatment is associated with epigenetic alterations of Homer1 promoter in a mouse model of chronic depression. Journal of Affective Disorders. 279: 501-509. doi: 10.1016/j.jad.2020.10.040
  • Mitra, S., Anjum, J., Muni, M., Das, R., Rauf, A., Islam, F., Emran, T.B., Semwal, P., Hemeg, H.A., Alhumaydhi, F.A. and Wilairatana, P. (2022). Exploring the journey of emodin as a potential neuroprotective agent: Novel therapeutic insights with molecular mechanism of action. Biomedicine & Pharmacotherapy. 149. doi: 10.1016/j.biopha.2022.112877
  • Cherian, K., Schatzberg, A.F., & Keller, J. (2019). HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology, and cognition. Schizophrenia Research. 213: 72-79. doi: 10.1016/j.schres.2019.07.003
  • Zunszain, P.A., Anacker, C., Cattaneo, A., Carvalho, L.A., & Pariante, C.M. (2011). Glucocorticoids, cytokines and brain abnormalities in depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 35(3): 722-729. doi: 10.1016/j.pnpbp.2010.04.011
  • Tripathi, S.J., Chakraborty, S., Srikumar, B.N., Raju, T.R., & Rao, B.S.S. (2019). Prevention of chronic immobilization stress-induced enhanced expression of glucocorticoid receptors in the prefrontal cortex by inactivation of basolateral amygdala. Journal of Chemical Neuroanatomy. 95: 134-145. doi: 10.1016/j.jchemneu.2017.12.006
  • Duman, R.S., Malberg, J., & Thome, J. (1999). Neural plasticity to stress and antidepressant treatment. Biological Psychiatry. 46(9): 1181-1191. doi: 10.1016/S0006-3223(99)00177-8
  • Pilar-Cuéllar, F., Vidal, R., Díaz, A., Castro, E., dos Anjos, S., Pascual-Brazo, J., Linge, R., Vargas, V., Blanco, H., Martínez-Villayandre, B. and Pazos, Á. (2013). Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication. Neural Plasticity. 2013. doi: 10.1155/2013/537265
  • Nordanskog, P., Larsson, M.R., Larsson, E. M., & Johanson, A. (2014). Hippocampal volume in relation to clinical and cognitive outcome after electroconvulsive therapy in depression. Acta Psychiatrica Scandinavica. 129(4): 303-311. doi: 10.1111/acps.12150
  • Wiley, J.W., Higgins, G.A., & Athey, B.D. (2016). Stress and glucocorticoid receptor transcriptional programming in time and space: Implications for the brain-gut axis. Neurogastroenterology and Motility. 28(1): 12-25. doi: 10.1111/nmo.12706
  • Christmas, D.M., Potokar, J.P., & Davies, S.J.C. (2011). A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase. Neuropsychiatric Disease and Treatment. 7: 431-439.
  • Troubat, R., Barone, P., Leman, S., Desmidt, T., Cressant, A., Atanasova, B., Brizard, B., El Hage, W., Surget, A., Belzung, C. and Camus, V. (2021). Neuroinflammation and depression: A review. European Journal of Neuroscience, 53(1): 151-171. doi: 10.1111/ejn.14720

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.