29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Purification, chemical characterization and evaluation of the antioxidant potential of carvacrol from Thymus vulgaris

, , , , , , & show all
Pages 251-262 | Received 29 May 2023, Accepted 01 Jan 2024, Published online: 23 Jan 2024

References

  • Schieber, M. & Chandel, N.S. (2014). ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 24: 453-462. doi: 10.1016/j.cub.2014.03.034
  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. & Bitto, A. (2017). Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017.
  • Liou, G.-Y. & Storz, P. (2010). Reactive oxygen species in cancer. Free Radic. Res. 44(5): 479-496. doi: 10.3109/10715761003667554
  • Kaludercic, N. & Di Lisa, F. (2020). Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front. Cardiovasc. Med. 7: 12. doi: 10.3389/fcvm.2020.00012
  • Kumar, N. & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep (Amst). 24. e00370. doi: 10.1016/j.btre.2019.e00370
  • Gandova, V., Lazarov, A., Fidan, H., Dimov, M., Stankov, S., Denev, P., Ercisli, S., Stoyanova, A., Gulen, H., Assouguem, A., Farah, A., Ullah, R., Kara, M. & Bari, A. (2023). Physicochemical and biological properties of carvacrol. Open Chemistry. 21 (1): 20220319. doi: 10.1515/chem-2022-0319
  • Tohidi, B., Rahimmalek, M. & Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 220: 153-161. doi: 10.1016/j.foodchem.2016.09.203
  • Silva, A.S., Tewari, D., Sureda, A., Süntar, İ., Belwal, T., Battino, M., Nabavi, S. & Nabavi, S.M. (2021). The evidence of health benefits and food applications of Thymus vulgaris L. Trends in Food Science and Technology. 117: 218-227. doi: 10.1016/j.tifs.2021.11.010
  • Tohidi, B., Rahimmalek, M. & Trindade, H. (2019). Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Industrial Crops and Products. 134. 89-99. doi: 10.1016/j.indcrop.2019.02.038
  • Ridaoui, K., Guenaou, I., Taouam, I., Cherki, M., Bourhim, N., Elamrani, A. & Kabine, M. (2022). Comparative study of the antioxidant activity of the essential oils of five plants against the H2O2 induced stress in Saccharomyces cerevisiae. Saudi J. Biol. Sci. 29(3): 1842-1852. doi: 10.1016/j.sjbs.2021.10.040
  • Wu, Z., Tan, B., Liu, Y., Dunn, J., Martorell Guerola, P., Tortajada, M., Cao, Z. & Ji, P. (2019). Chemical composition and antioxidant properties of essential oils from peppermint, native spearmint and scotch spearmint. Molecules. 24(15): 2825. doi: 10.3390/molecules24152825
  • Dorman, H.J.D., Bachmayer, O., Kosar, M. & Hiltunen, R. (2004). Antioxidant properties of aqueous extracts from selected Lamiaceae species grown in Turkey. J. Agric. Food. Chem. 52(4): 762-770. doi: 10.1021/jf034908v
  • Trabelsi, N., Megdiche, W., Ksouri, R., Falleh, H., Oueslati, S., Bourgou, S., Hajlaoui, H. & Abdelly, C. (2010). Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. Food Sci. Tech. 43: 632-639.
  • Dani, C., Bonatto, D., Salvador, M., Pereira, M.D., Henriques, J.A.P. & Eleutherio, E. (2008). Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. J. Agric. Food. Chem. 56 (11): 4268-4272. doi: 10.1021/jf800752s
  • Sá, R.A. de, Castro, F.A.V. de, Eleutherio, E.C.A., Souza, R.M. de, Silva, J.F.M. da, & Pereira, M.D. (2013). Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Braz. J. Microbiol. 44(3): 993-1000. doi: 10.1590/S1517-83822013005000062
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1): 248-254. doi: 10.1016/0003-2697(76)90527-3
  • Aebi, H. (1984). Catalase in vitro. In Methods Enzymol. 105: 121-126. doi: 10.1016/S0076-6879(84)05016-3
  • Paoletti, F., Aldinucci, D., Mocali, A., Caparrini, A. (1986). A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154 (2): 536-541. doi: 10.1016/0003-2697(86)90026-6
  • Di Ilio, C., Polidoro, G., Arduini, A., Muccini, A. & Federici, G. (1983). Glutathione peroxidase, glutathione reductase, glutathione S-transferase, and γ-glutamyltranspeptidase activities in the human early pregnancy placenta. Biochem. Med. 29(2): 143-148. doi: 10.1016/0006-2944(83)90034-0
  • Samokyszyn, V.M. & Marnett, L.J. (1990). Inhibition of liver microsomal lipid peroxidation by 13-cis-retinoic acid. Free Radic. Biol. Med. 8(5): 491-496. doi: 10.1016/0891-5849(90)90063-O
  • King, T.E. (1967). Preparations of succinate-Cytochrome c reductase and the cytochrome b-c1 particle, and reconstitution of succinate-cytochrome c reductase. In Methods Enzymol. Vol. 10, p. 216-225. Elsevier.
  • Locci, E., Lai, S., Piras, A., Marongiu, B. & Lai, A. (2004). 13C-CPMAS and 1H-NMR study of the inclusion complexes of β-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide. Chem Biodivers. 1(9): 1354-1366. doi: 10.1002/cbdv.200490098
  • Ransy, C., Vaz, C., Lombès, A. & Bouillaud, F. (2020). Use of H2O2 to cause oxidative stress, the catalase issue. Int. J. Mol. Sci. 21(23): 9149. doi: 10.3390/ijms21239149
  • Ward, J.F., Evans, J.W., Limoli, C.L. & Calabro-Jones, P. (1987). Radiation and hydrogen peroxide induced free radical damage to DNA. Bri. J. Cancer. Suppl. 8: 105.
  • Ghosh, N., Das, A., Chaffee, S., Roy, S. & Sen, C.K. (2018). Reactive oxygen species, oxidative damage and cell death. In Immunity and inflammation in health and disease. (p. 45-55). Elsevier.
  • Oroian, M. & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 74: 10-36 doi: 10.1016/j.foodres.2015.04.018
  • Adebiyi, O.E., Olayemi, F.O., Ning-Hua, T. & Guang-Zhi, Z. (2017). In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef Univ. J. Basic Appl. Sci. 6(1): 10-14.
  • Sharopov, F. S., Wink, M. & Setzer, W. N. (2015). Radical scavenging and antioxidant activities of essential oil components-An experimental and computational investigation. Nat. Prod. Commun. 10(1): 1934578X1501000135.
  • Yildiz, S., Turan, S., Kiralan, M. & Ramadan, M.F. (2021). Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact. 15(1): 621-632. doi: 10.1007/s11694-020-00665-0
  • Tregnaghi, M.W., Saez-Llorens, X., Lopez, P., Abate, H., Smith, E., Posleman, A., Calvo, A., Wong, D., Cortes-Barbosa, C. & Ceballos, A. (2014). Efficacy of pneumococcal nontypable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) in young Latin American children: A double-blind randomized controlled trial. PLoS Med. 11(6), e1001657 doi: 10.1371/journal.pmed.1001657
  • Nandi, A., Yan, L.-J., Jana, C.K. & Das, N. (2019). Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxid Med. Cell. Longev. 2019
  • Bayliak, M., Semchyshyn, H. & Lushchak, V. (2006). Effect of hydrogen peroxide on antioxidant enzyme activities in Saccharomyces cerevisiae is strain-specific. Biochemistry (Mosc). 71(9): 1013-1020. doi: 10.1134/S0006297906090100
  • Semchyshyn, H.M. & Lozinska, L.M. (2012). Fructose protects baker’s yeast against peroxide stress: Potential role of catalase and superoxide dismutase. FEMS Yeast Res. 12(7): 761-773. doi: 10.1111/j.1567-1364.2012.00826.x
  • Gomes, B., Calanzani, N., Gysels, M., Hall, S. & Higginson, I.J. (2013). Heterogeneity and changes in preferences for dying at home: A systematic review. BMC Palliat. Care. 12(1): 1-13. doi: 10.1186/1472-684X-12-7
  • Ayala, A., Muñoz, M.F. & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014: 360438. doi: 10.1155/2014/360438
  • Luz, T.R.S.A., Leite, J.A.C., de Mesquita, L.S.S., Bezerra, S.A., Silveira, D.P.B., de Mesquita, J.W.C., Gomes, R.E.C., Vilanova, C.M., de Sousa Ribeiro, M.N. & do Amaral, F.M.M. (2020). Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens (L.) Kuntze. Ind. Crops Prod. 153, 112600. doi: 10.1016/j.indcrop.2020.112600
  • Quiroga, P.R., Asensio, C.M. & Nepote, V. (2015). Antioxidant effects of the monoterpenes carvacrol, thymol and sabinene hydrate on chemical and sensory stability of roasted sunflower seeds. J. Sci. Food Agric. 95(3): 471-479. doi: 10.1002/jsfa.6744
  • Sadowska-Bartosz, I., Pączka, A., Mołoń, M. & Bartosz, G. (2013). Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 13(8): 820-830. doi: 10.1111/1567-1364.12091
  • Rustin, P., Munnich, A. & Rötig, A. (2002). Succinate dehydrogenase and human diseases: New insights into a well-known enzyme. Eur. J. Hum. Genet. 10(5): 289-291 doi: 10.1038/sj.ejhg.5200793
  • Chen, K., Liu, J. & Cao, X. (2017). Regulation of type I interferon signaling in immunity and inflammation: A comprehensive review. J. Autoimmun. 83: 1-11. doi: 10.1016/j.jaut.2017.03.008
  • Chenet, A.L., Duarte, A.R., de Almeida, F.J. S., Andrade, C.M.B. & de Oliveira, M.R. (2019). Carvacrol depends on heme oxygenase-1 (HO-1) to exert antioxidant, anti-inflammatory, and mitochondria-related protection in the human neuroblastoma SH-SY5Y cells line exposed to hydrogen peroxide. Neurochem. Res. 44(4): 884-896. doi: 10.1007/s11064-019-02724-5
  • Ghasemi, P.A., Barani, M., Hamedi, B., Ataei, K.M. & Karimi, A. (2013). Environment effect on diversity in quality and quantity of essential oil of different wild populations of Kerman thyme. Genetika-belgrade. 45: 441-450. doi: 10.2298/GENSR1302441P
  • Nabavi, S., Marchese, A., Izadi, M., Curti, V., Daglia, M., Nabavi, S. (2015). Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 173. doi: 10.1016/j.foodchem.2014.10.042
  • Llana-Ruiz-Cabello, M., Gutiérrez-Praena, D., Puerto, M., Pichardo, S., Jos, A., Cameán, A. (2015). In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicology in vitro: an international journal published in association with BIBRA. 29.
  • Aljabeili, H.S., Barakat, H. & Abdel-Rahman, H.A. (2018). Chemical composition, antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). Food Nutri. Sci. 9(05): 433.
  • Grespan, R., Aguiar, R., Giubilei, F., Fuso, R., Damião, M., Silva, E., Mikcha, J., Hernandes, L., Bersani-Amado, C. & Cuman, R. (2014). Hepatoprotective effect of pretreatment with Thymus vulgaris essential oil in experimental model of acetaminophen-induced injury. Evidence-based Complementary and Alternative Medicine: eCAM. 2014. 954136. doi: 10.1155/2014/954136

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.