27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Essential oil of Lavandula dentata L. (Lamiaceae) as a potential larvicidal agent against Aedes mariae (Diptera: Culicidae), an invasive species from the coasts of Algeria

, , , , &
Pages 211-229 | Received 24 Jul 2023, Accepted 09 Jan 2024, Published online: 15 Feb 2024

References

  • Kowo, C., Audrey Mayi, M.P., Gouveia de Almeida, A.P., Foncha, D., Elad, M., Andongma, E., Djomo, C., Fru-Cho, J., Nota Anong, D., Sehgal, R and Cornel, A.J. (2023). Descriptions of a new Aedes species and subspecies of the subgenus Aedimorphus, from southwest Cameroon and updated key for the species of the “Domesticus group”. Afr. Entomo. 31: 1-6. doi: 10.17159/2254-8854/2023/a15181
  • Becker, N., Dusan, P., Zgomba, M., Boase, C., Madon, M.B and Dahl, C. (2020). Mosquitoes: Identification, Ecology and Control, Springer Nature Switzerland. pp. 570.
  • Mastrantonio, V., Porretta, D., Bellini, R., Nascetti, G and Urbanelli, S. (2015). Molecular systematics and origin of the mediterranean sea rock-pool mosquitoes of the Aedes mariae (Diptera: Culicidae) complex. Ann. Entomol. Soc. Am. 108: 593-599. doi: 10.1093/aesa/sav031
  • Bueno, M and Serna Mompeán, J.P. (2011). Primera cita de Ochlerotatus mariae (Sergent & Sergent, 1903) (Diptera, Culicidae) en la Comunidad Valenciana: Implicaciones en el control de esta especie singular. Revta. Gad. Entom. volumen VI núm. 1: 63-66.
  • Gutsevich, A.V., Monchadskii, A.S and Shtakelberg, A.A. (1974). Fauna of the U.S.S.R. Diptera, Mosquitoes, Family Culicidae. Academy of Sciences of the USSR, Zoological Institute, Lenigrad English translation: Israel Program for Scientific Translations, Jerusalem. 100(3): 384.
  • Nelsen, J.A. and Yee, D.A. (2022). Mosquito larvicides disrupt behavior and survival rates of aquatic insect predators. Hydrobiologia. 849(21): 4823-4835. doi: 10.1007/s10750-022-05021-5
  • Padmanaban, H., Mandodan, S., Bora, B., Sivaprakasam, M., Vijayakumar, A., Lukose, J and Poopathi, S. (2022). Scoping review on impact of mosquito-borne diseases of man and animals and use of potential bacterial larvicidal agents to control mosquito vectors). Int. J. Pharm. Biol. Sci. Arch. 4(02): 046-055. doi: 10.53771/ijbpsa.2022.4.2.0088
  • Hafsi, N.E., Hamaidia, K. and Soltani, N. (2022). Chemical screening, insecticidal and reprotoxic activities of Tecoma stans: ethanolic leaf extract against the vector mosquito Culex pipiens. Physiol. Entomol. 47: 176-187. doi: 10.1111/phen.12386
  • Alayat, M.S., Bendali-Saoudi, F., Mahmoudi, K. and Soltani, N. (2023). Diversity and spatio-temporal distribution of mosquitoes (Diptera: Culicidae) in the Laghouat arid region (Algerian northern Sahara). Orient. Insects. 57(4): 1102-1127. doi: 10.1080/00305316.2023.2187892
  • Rehimi, N. and Soltani, N. (1999). Laboratory evaluation of Alsystin, a chitin synthesis inhibitor, against Culex pipiens pipiens (Dip., Culicidae): effects on development and cuticle secretion. J. Appl. Entomol. 123: 437-441. doi: 10.1046/j.1439-0418.1999.00388.x
  • Soltani, N., Rehimi, N., Drardja, H. and Bendali, F. (1999). Activité du triflumuron à l’égard de Culex pipiens et impacts sur deux espèces larvivores non visées. Ann. Soc. Entomol. Fr. (N.S.). 35: 59-64.
  • Djeghader, N.E.H., Boudjelida, H., Bouaziz, A. and Soltani, N. (2013). Biological effects of a benzoylphenylurea derivative (Novaluron) on larvae of Culex pipiens (Diptera: Culicidae). Adv. Appl. Sci. Res. 4(4): 449-456.
  • Hamaidia, K. and Soltani, N. (2014). Laboratory evaluation of a biorational insecticide, kinoprene, against Culex pipiens larvae: effects on growth and development. Annu. Res. Rev. Biol. 4(14): 2263-2273. doi: 10.9734/ARRB/2014/9729
  • Boudjelida, H., Bouaziz, A., Soin, T., Smagghe, G. and Soltani, N. (2005). Effects of ecdysone agonist halofenozide against Culex pipiens. Pest. Biochem. Physiol. 83 (2/3): 115-123.
  • Hamaidia, K., Tine-djebbar, F. and Soltani, N. (2018). Activity of a selective insecticide (methoxyfenozide) against two mosquito species (Culex pipiens and Culiseta longiarhelata): toxicological, biometrical and biochemical study. Physiol. Entomol. 43 (4): 315-323. doi: 10.1111/phen.12261
  • Hamaidia, K. and Soltani, N. (2020). Methoxyfenozide, a molting hormone agonist, affects autogeny capacity, oviposition, fecundity, and fertility in Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 58: 1004-1011. doi: 10.1093/jme/tjaa260
  • Bendali, F., Djebbar, F. and Soltani, N. (2001). Efficacité comparée de quelques espèces de poissons à l’égard de divers stades de Culex pipiens L. dans des conditions de laboratoire. Parasitica. 57: 255-265.
  • Mahmoudi, K., Bendali-Saoudi, F. and Soltani, N. (2022). Potential predation of Cyclops fuscus Jurine, 1820 (Crustacea Copepoda) against two mosquito species Culex pipiens Linnaeus, 1758 and Culiseta longiareolata Macquart, 1838 (Diptera Culicidae). Biodiv. J. 13(4): 805-812. doi: 10.31396/Biodiv.Jour.2022.13.4.805.812
  • Vivekanandhan, P., Venkatesan, R., Ramkumar, G., Karthi, S., Senthil-Nathan, S. and Shivakumar, M.S. (2018). Comparative analysis of major mosquito vectors response to seed-derived essential oil and seed pod-derived extract from Acacia nilotica. Int. J. Environ. Res. Public Health. 15(2): 388. doi: 10.3390/ijerph15020388
  • Vivekanandhan, P., Senthil-Nathan, S. and Shivakumar, M.S. (2018). Larvicidal, pupicidal and adult smoke toxic effects of Acanthospermum hispidum (DC) leaf crude extracts against mosquito vectors. Phy. Mol. Plant. Pathol. 101: 156-162. doi: 10.1016/j.pmpp.2017.05.005
  • Vivekanandhan, P., Usha-Raja-Nanthini, A., Valli, G. and Shivakumar, M.S. (2018). Comparative efficacy of Eucalyptus globulus (Labill) hydrodistilled essential oil and temephos as mosquito larvicide. Nat. Prod. Rep. 34: 2626-2629. doi: 10.1080/14786419.2018.1547290
  • Vivekanandhan, P., Swathy, K., Sarayut, P., Ragavendran, C. and Patcharin, K. (2023). Essential oils from Acacia nilotica (Fabales: Fabaceae) seeds: May have insecticidal effects? Heliyon. 9: e14808. doi: 10.1016/j.heliyon.2023.e14808
  • Pratheeba, T., Vivekanandhan, P., Nur Faeza, A.K. and Natarajan, D. (2019). Chemical constituents and larvicidal efficacy of Naringi crenulata (Rutaceae) plant extracts and bioassay guided fractions against Culex quinquefasciatus mosquito (Diptera: Culicidae). Biocatal. Agri. Biotechnologie. 19: 101137. doi: 10.1016/j.bcab.2019.101137
  • Huong, L.T., Dai, D.N., Thin, D.B., Hung, N.H. and Thinh, B.B. (2023). Essential oils of Distichochlamys benenica: chemical constituents, mosquito larvicidal and antimicrobial activities. Nat. Prod. Commun. 18(8): 1934578X231193541.
  • Huong, L.T., Thinh, B.B., Hung, N.H., Phu, H.V., Hieu, N.C. and Dai, D.N. (2023). Chemical composition, antimicrobial and larvicidal activities of essential oils of two Syzygium species from Vietnam. Braz. J. Biol. 84: e270967. doi: 10.1590/1519-6984.270967
  • Dris, D., Tine-Djebbar, F. and Soltani, N. (2017). Lavandula dentata essential oils: chemical composition and larvicidal activity against Culiseta longiareolata and Culex pipiens (Diptera: Culicidae). Afr. Entomol. 25(2): 387–394. doi: 10.4001/003.025.0387
  • Kharoubi, R., Rehimi, N., Khaldi, R., Haouari abderrahim, J. and Soltani, N. (2021). Phytochemical screening and insecticidal activities of essential oil of Mentha x piperita L. (Lamiales: Lamiaceae) and their enzymatic properties against Mosquito Culex pipiens L. (Diptera: Culicidae). J. Essent. Oil-Bear. Plants. 24(1): 134-146. doi: 10.1080/0972060X.2021.1888158
  • Khaldi, R., Rehimi, N., Kharoubi, R. and Soltani, N. (2022). Phytochemical composition of almond oil from Melia azedarach L. and its larvicidal, ovicidal, repellent and enzyme activities in Culex pipiens L. Trop. Biomed. 39(4): 531-538. doi: 10.47665/tb.39.4.008
  • Cape. (2009). Position Statement on Synthetic Pesticides. http://rainforests.mongabay.com.html
  • Belmain, S.R., Haggar, J., Holt, J. and Stevenson, P.C. (2013). Managing legume pests in sub-Saharan Africa: Challenges and prospects for improving food security and nutrition through agro-ecological intensification. Chatham Maritime (United Kingdom): Natural Resources Institute (NRI), University of Greenwich, pp.34.
  • Gilden, R.C., Huffling, K. and Sattler, B. (2010). Pesticides and health risks. J. Obstet. Gynecol and Neo. Nurs. 39: 103-110. doi: 10.1111/j.1552-6909.2009.01092.x
  • Rahimi, R. and Abdollahi, M. (2007). A review on the mechanisms involved in hyperglycemia induced by organophosphorus pesticides. Pestic Biochem. Phys. 88(2): 115-121. doi: 10.1016/j.pestbp.2006.10.003
  • Stevenson, P.C., Arnold, S.E.J. and Belmain, S.R. (2014). Pesticidal plants for stored product pest in smallholder farming in Africa. In “Advances in Plant Biopesticides” Ed. D. Singh. Springer Verlag, pp.149-172.
  • Mkenda, P., Mwanauta, R., Stevenson, P.C., Ndakidemi, P., Mtei, K. and Belmain, S.R. (2015). Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS One. 10(11): e0143530. doi: 10.1371/journal.pone.0143530
  • Franz, C.H. (1986). Actual problems on the quality of medicinal and aromatic plants. Acta Hortic. 188: 21-34. doi: 10.17660/ActaHortic.1986.188.2
  • Hui, L., Jingrui, L., Hongtong, B., Lei, S., Huafang, W. (2019). The complete chloroplast genome sequence of Lavandula dentata (Lamiaceae) and its phylogenetic analysis. Mitochondrial DNA Part B. (4): 2135-2136.
  • Giuliani, C., Bottoni, M., Ascrizzi, R., Milani, F., Papini, A., Flamini, G., Fico, G. (2020). Lavandula dentata from Italy: analysis of trichomes and volatiles. Chemistry & Biodiversity. 17: 11.
  • Lim, T.K. (2014). Lavandula angustifolia. In Edible Medicinal and Non Medicinal Plants: Volume 8, Flowers, Dordrecht: Springer Netherlands, pp. 156-185.
  • Rebey, B.I., Bourgou, S., Saidani Tounsi, M., Fauconnier, M.L., Ksouri, R. (2017). Etude de la composition chimique et de l’activité antioxydante des différents extraits de la Lavande dentée (Lavandula dentata). J. N. Sci. Agric. Biotechnol. 39(2): 2096-2105.
  • Bouyahya, A., Chamkhi, I., El Menyiy, N., El Moudden, H., Harhar, H., Lakhlifi El Idrissi, Z., Khouchlaa, A., Jouadi, I., El Baaboua, A., Taha, D., Balahbib, A., Khalid, A., Abdalla, A., Zengin, G., Simal-Gandara, J., El Omari, N. (2023). Traditional use, phytochemistry, toxicology, and pharmacological properties of Lavandula dentata L. S. Afr. J. Bot. 154: 67-87. doi: 10.1016/j.sajb.2023.01.023
  • McGimpsey, J.A. and Porter, N.G. (1999). Lavender. A growers guide for commercial production, New Zealand Institute for Crop and Food Research Limited, Christchurch, New Zealand. ISBN 0478108125.
  • Caputo, L., Nazzaro, F., Souza, L.F., Aliberti, L., De Martino, L., Fratianni, F. and De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules. 22(6): 930. doi: 10.3390/molecules22060930
  • Muthu, C., Ayyanar, M., Raja, N. and Ignacimuthu, S. (2006). Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. J. Ethnobiol. Ethnomed. 2-43.
  • Bengoa, M., Rotger, A., Luzón, R. and Barceló, C. (2021). Larvae ecology and adult activity of Aedes mariae (Diptera: Culicidae) in a touristic rock-pool area of the Balearic Islands (Western Mediterranean). Bull. Entomol. Res. 112(3): 1-8.
  • Sergent, E.D. and Sergent, E.T. (1903). Observations sur les moustiques des environs d’Alger. Annal. Inst. Pasteur Algérie. 17: 60-67.
  • Smallfield, B. (2001). Introduction to growing herbs for essential oils, medicinal and culinary purposes. Crop and Food Research. 45:1–4.
  • AFNOR. (2000). Recueil de normes Française: Les huiles essentielles. Tome 2.
  • European Pharmacopoeia Tenth Edition Volume I. (2019). Council of Europe, 67075 Strasbourg Cedex. France ISBN: 978-92-871-8912-7.
  • World Health Organization (WHO). (2005). Guidelines for laboratory and field testing of mosquito larvicides. Ref. WHO/CDS/WHOPES/GCPP/13, pp. 41.
  • Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. J. Econ Ent. 18: 265-7. doi: 10.1093/jee/18.2.265a
  • Swaroop, S., Gilroy, A.B. and Uemura, K. (1966). Statistical methods in malaria eradication. Geneva: World Health Organisation.
  • Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130-7139. doi: 10.1016/S0021-9258(19)42083-8
  • Ellman, G.L., Courtney, K.D., Andres, V. and Featherstone, R.M. (1961). A new and rapid colorimetic determination of acetylcholesterase activity. Biochem. Pharmacol. 7: 88-95. doi: 10.1016/0006-2952(61)90145-9
  • Bradford, M. (1976). A rapid and sensitive method for the quantitation microgram quantities of protein utilising the principle dye binding. Anal Biochem. 72: 248-54. doi: 10.1016/0003-2697(76)90527-3
  • Draper, H.H. and Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxydation. Meth. Enzymol. 186: 241-431.
  • Bouabida, H., Tine-djebbar, F., Tine, S. and Soltani, N. (2017). Activity of a lipid synthesis inhibitor (spiromesifen) in Culiseta longiareolata (Diptera: Culicidae). Asian Pac. J. Trop. Biomed. 7(12): 1120-1124. doi: 10.1016/j.apjtb.2017.10.015
  • Schaffner, F., Angel, G., Geoffroy, B., Hervy, J.O. and Rhaeim, A. (2001). The mosquitoes of Europe / Les moustiques d’Europe. IRD Éditions and EID Méditerranée.
  • Nebbak, A., Monteil-Bouchard, S., Berenger, J.M., Almeras, L., Parola, P. and Desnues, C. (2021). Virome diversity among mosquito populations in a sub-urban region of marseille, France. Viruses. 13(5): 768. doi: 10.3390/v13050768
  • Becker, N., Petrić, D. and Zgomba. M. (2020). Mosquitoes, 3rd Edition, Fascinating Life Sciences, Springer Nature Switzerland AG.
  • Jones, R.T., Ant, T.H., Cameron, M.M. and Logan, J.G. (2021). Novel control strategies for mosquito-borne diseases. The Royal Society. 376: 1818.
  • Selim, A. (2021). Seroprevalence and risk factors associated with Canine Leishmaniasis in Egypt. Vet. Sci. 8(10): 236. doi: 10.3390/vetsci8100236
  • Xhekaj, B., Stefanovska, J., Sherifi, K., Rexhepi, A., Bizhga, B., Rashikj, L., Nikolovski, M., Kniha, E. and Cvetkovikj, A. (2023). Seroprevalence of canine leishmaniosis in asymptomatic dogs in Kosovo. Parasitol. Res. 122: 607-614. doi: 10.1007/s00436-022-07762-7
  • Selim, A., Megahed, A.A., Kandeel, S. and Abdelhady, A. (2020). Risk factor analysis of bovine leukemia virus infection in dairy cattle in Egypt. Compar. Immunol. Microbiol. Infectious Diseases. 72: 101517.
  • Selim, A. and Abdelhady, A. (2020). The first detection of anti-West Nile virus antibody in domestic ruminants in Egypt. Trop. Anim. Health. Prod. 52: 3147-3151. doi: 10.1007/s11250-020-02339-x
  • Selim, A., Abdelhady, A. and Alahadeb, J. (2020). Prevalence and first molecular characterization of Ehrlichia canis in Egyptian dogs. Pak. Vet. J. 41(1): 117-121. doi: 10.29261/pakvetj/2020.061
  • Baz, M.M. (2013). Strategies for mosquito control. PhD thesis, faculty of Science, Benha University, Egypt.
  • Khater, H.F. (2012). Prospects of botanical biopesticides in insect pest management. Pharmacologia. 3(12): 641-656. doi: 10.5567/pharmacologia.2012.641.656
  • Khater, H.F. (2013). Bioactivity of essential oils as green biopesticides: Recent global scenario. Recent Progress Med. Plants. 37: 151–218.
  • Khan, N. and Mukhtar, H. (2013). Tea and health: Studies in humans. Curr. Pharm. Des. 19(34): 6141-6147. doi: 10.2174/1381612811319340008
  • Govindarajan, M., Rajeswary, M., Hoti, S., Bhattacharyya, A. and Benelli, G. (2016). Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res. 115: 807-815. doi: 10.1007/s00436-015-4809-0
  • Khater, H. and Geden, C. (2018). Potential of essential oils to prevent fly strike by Lucilia sericata, and effects of oils on longevity of adult flies. J. Vector Ecol. 43: 261-270. doi: 10.1111/jvec.12310
  • Gómez-Estaca, D.E., Lacey, A.L., López-Caballero, M., Gómez-Guillén, M. and Montero, P. (2010). Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food. Microbiol. 27(7): 889-896. doi: 10.1016/j.fm.2010.05.012
  • Dris, D., Tine-Djebbar, F., Bouabida, H. and Soltani, N. (2017). Chemical composition and activity of an Ocimum basilicum essential oil on Culex pipiens larvae: Toxicological, biometrical and biochemical aspects. S. Afr. J. Bot. 113: 362–369. doi: 10.1016/j.sajb.2017.09.013
  • Msaada, K., Salem, N., Tammar, S., Hammami, M., Saharkhiz, M.J. and Debiche, N. (2012). Essential oil composition of Lavandula dentata, L. stoechas and L. multifida cultivated in Tunisia. J. Essent. Oil-Bear. Plants. 15(6). doi: 10.1080/0972060X.2012.10662608
  • El-Akhal, F., Ramzi, A., Farah, A., Ez Zoubi, Y., Benboubker, M. and Taghzouti K. (2021). Chemical composition and larvicidal activity of Lavandula angustifolia subsp. angustifolia and Lavandula dentata spp. dentata essential oils against Culex pipiens Larvae, vector of west nile virus. J. Entomol. 2021(2021): 8872139.
  • Martins, R., Gomes, R.A. and Malpass, A.C. (2019). Chemical characterization of Lavandula dentata L. Essential oils grown in Uberaba-MG. Cienc. Rural. 49: 8.
  • Ez zoubi, Y., Bousta, D. and Farah, A. (2020). A phytopharmacological review of a Mediterranean plant: Lavandula stoechas L. Clin. Phytoscience. 6(9).
  • Giang, T.V., Chac, L.D., Chinh, H.V. and Thinh, B.B. (2023). Essential oil from the stems of Croton kongensis Gagnep.: chemical composition, antimicrobial and anti-inflammatory activities. J. Essent. Oil-Bear. Plants. 26(4): 1018-1031. doi: 10.1080/0972060X.2023.2256791
  • El-Akhal, F., Guemmouh, R., Greche, H. and Ouali Lalami, A.E. (2014). Valorisation en tant que bioinsecticide de deux huiles essentielles de Citrus sinensis et Citrus aurantium cultivées au centre du Maroc (Valorization as a bio-insecticide of essential oils of Citrus sinensis and Citrus aurantium cultivated in center of Morocco). J. Mater. Environ Sci. 5(S1): 2319-2324.
  • Tabari, M.A., Youssefi, M.R., Esfandiari, A. and Benelli, G. (2017). Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Res. Vet. Sci. 114: 36-40. doi: 10.1016/j.rvsc.2017.03.001
  • Michaelakis, A., Vidali, V.P. and Papachristos, D.P. (2013). Bioefficacy of acyclic monoterpenes and their saturated derivatives against the West Nile vector Culex pipiens. Chemosphere. 96: 74-80. doi: 10.1016/j.chemosphere.2013.07.032
  • Fujiwara, G.M., Annies, V. and Oliveira, C.F. (2017). Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicol. Environ. Saf. 139: 238-244. doi: 10.1016/j.ecoenv.2017.01.046
  • Pavela, R. (2015). Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 114(10): 3835-3853. doi: 10.1007/s00436-015-4614-9
  • Seo, S.M., Jung, C.S., Kang, J., Lee, H.R., Kim, S.W. and Hyun, J. (2015). Larvicidal and acetyteholinesterase inhibitory activities of apiaceae plant essential oils and their constituents against Aedes albopictus and formulation development. J. Agric. Food Chem. 63: 9977-9986. doi: 10.1021/acs.jafc.5b03586
  • Li, Y., Wu, W., Jian, R., Ren, X., Chen, X. and Hong, W.D. (2023). Larvicidal, acetylcholinesterase inhibitory activities of four essential oils and their constituents against Aedes albopictus, and nanoemulsion preparation. J. Pest Sci. 96: 961-971. doi: 10.1007/s10340-022-01555-8
  • López, V., Pavela, R., Gómez-Rincón, C., Les, F., Bartolucci, F. and Galiffa, V. (2019). Efficacy of Origanum syriacum essential oil against the mosquito vector Culex quinquefasciatus and the gastrointestinal parasite anisakis simplex, with insights on acetylcholinesterase inhibition. Molecules. 24(14): 2563. doi: 10.3390/molecules24142563
  • Shahat, M.A.M., El-Sheikh, T.M.Y., Hammad, K.M., Hasaballah, A.I. and Shehata, A.Z.I. (2020). Effect of some plant extracts on the biochemical parameters, AChE and GST activities of the mosquito, Culex pipiens L. (Diptera: Culicidae). Egypt. Acad. J. Biol. Sci. 12: 69-80.
  • Kharoubi, R., Rehimi, N. and Soltani, N. (2020). Essential oil from Mentha rotundifolia harvested in Northeast Algeria: chemical composition, larvicidal and enzymatic activities on Culex pipiens Larvae. Transylv. Rev. 27: 14724-14732.
  • Bouabida, H. and Dris, D. (2020). Effect of rue (Ruta graveolens) essential oil on mortality, development, biochemical and biomarkers of Culiseta longiareolata. S. Afr. J. Bot. 133: 139-143. doi: 10.1016/j.sajb.2020.07.005
  • Guo, B., Feng, D., Xu, Z., Qi, P. and Yan, X. (2021). Acute benzo pyrene exposure induced oxidative stress, neurotoxicity and epigenetic change in blood clam Tegillarca granosa. Sci. Rep. 11: 18744. doi: 10.1038/s41598-021-98354-5
  • Maiza, A., Kilani-morakchi, S., Rehamnia, F., Bensbaa, F. and Aribi, N.B. (2011). Activité d’un biopesticide, le spinosad, chez blattella germanica: effets sur divers biomarqueurs (LDH, GSH, MDA). Bull. Soc. Zool. Fr. 136(1-4): 189-204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.