23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The capacity of Lamiaceae essential oils, extracts and hydrolats against pathogenic biofilms

, , , &
Pages 450-468 | Received 17 Nov 2023, Accepted 02 Feb 2024, Published online: 18 Mar 2024

References

  • Simões, M., Simões, L.C., Vieira, M.J. (2010). A review of current and emergent biofilm control strategies. Food. Sci. Technol. 43(4): 573-583.
  • Coughlan, L.M., Cotter, P.D., Hill, C., Alvarez-Ordóñez. (2016). A New weapons to fight old enemies: Novel strategies for the (bio)control of bacterial biofilms in the food industry. Front. Microbiol. 7. doi: 10.3389/fmicb.2016.01641
  • Fink, R., Wang, Z., Oder, M., Brooks, B.W. (2020). Balancing chemical function with reduced environmental health hazards: A joint probability approach to examine antimicrobial product efficacy and mammalian toxicity. J. Clean Prod. 121323.
  • Hori, K., Matsumoto, S. (2010). Bacterial adhesion: From mechanism to control. Biochem. Eng. J. 48(3): 424-434. doi: 10.1016/j.bej.2009.11.014
  • Fink, R. (2015). Higienically Relevant Biofilms. Nova Science Publishers. 234 p.
  • Sauer, K., Stoodley, P., Goeres, D.M., Hall-Stoodeley, L., Burmølle, M., Stewart, P.S., Bjarnsholt T. (2022). The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 20(10): 608-620. doi: 10.1038/s41579-022-00767-0
  • Dai, C., Lin, J., Li, H., Shen, Z., Wang, Y., Velkov, T., Shen, J. (2022). The natural product curcumin as an antibacterial agent: Current achievements and problems. Antioxidants. 11(3): 459. doi: 10.3390/antiox11030459
  • Zimmerman, J.B., Anastas, P.T., Erythropel, H.C., Leitner, W. (2020). Designing for a green chemistry future. Science. 367(6476): 397-400. doi: 10.1126/science.aay3060
  • Shrestha, D.K. (2022). Evaluation of phytochemicals, antibacterial, antioxidant activity, total flavonoid, and phenolic content of Zanthoxylum armatum found in Palpa district of Nepal. Asian. J. Multidim. Res. 11(6): 156-173. doi: 10.5958/2278-4853.2022.00163.X
  • Raja, R.R. (2012). Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. Res. J. Med. Plant. 6(3): 203-213. doi: 10.3923/rjmp.2012.203.213
  • Kowalczyk, A., Przychodna, M., Sopata, S., Bodalska, A., Fecka, I. (2020). Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules. 25(18): 4125. doi: 10.3390/molecules25184125
  • Mahboubi, M. (2020). Clary sage essential oil and its biological activities. Adv. Trad. Med. 20(4): 517-528.
  • Gabetti, E., Sgorbini, B., Stilo, F., Bicchi, C., Rubiolo, P., Chialva, F., Reichenbach S.E., Bongiovanni, V., Cordero C., Cavallero A. (2021). Chemical fingerprinting strategies based on comprehensive two-dimensional gas chromatography combined with gas chromatography-olfactometry to capture the unique signature of Piemonte peppermint essential oil (Mentha x piperita var Italo-Mitcham). J. Chromat. A. 1645: 462101. doi: 10.1016/j.chroma.2021.462101
  • Kozlowska, M., Laudy, A.E., Przybyl, J., Ziarno, M., Majewska, E. (2015). Chemical composition and antibacterial activity of some medicinal plants from Lamiaceae family. Acta Pol. Pharm. 72(4): 757-67.
  • Moumni, S., Elaissi, A., Trabelsi, A., Merghni A., Chraief, I., Jelassi, B., Chemli, R., Ferchichi, S. (2020). Correlation between chemical composition and antibacterial activity of some Lamiaceae species essential oils from Tunisia. BMC Complem. Med. Ther. 20(1): 1-15. doi: 10.1186/s12906-020-02888-6
  • Mahmoudi, S., Nasiri, R., Jafari, Sales, A. (2019). In-vitro antibacterial effects of methanolic extract of peppermint (Mentha Piperita Lamiaceae) on standard Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa strain. Jur. Biomed. J. 7(4): 4-10.
  • Niksic, H., Becic, F., Koric, E., Gusic, I., Omeragic, E., Muratovic, S., Miladinovic B., Duric, K. (2021). Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci. Report. 11(1): 13178. doi: 10.1038/s41598-021-92679-x
  • Weinstein, M.P. (2021). Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute.
  • Fink, R., Oder, M., Stražar, E., Filip, S. (2017). Efficacy of cleaning methods for the removal of Bacillus cereus biofilm from polyurethane conveyor belts in bakeries. Food Control. 80: 267-272. doi: 10.1016/j.foodcont.2017.05.009
  • Nhu-Trang, T.T., Casabianca, H., Grenier-Loustalot, M.F. (2006). Deuterium/hydrogen ratio analysis of thymol, carvacrol, γ-terpinene and p-cymene in thyme, savory and oregano essential oils by gas chromatography-pyrolysis-isotope ratio mass spectrometry. J. Chromat. A. 1132(1-2): 219-227.
  • Penalver, P., Huerta, B., Borge, C., Astorga, R., Romero, R., Perea, A. (2005). Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family. Apmis. 113(1): 1-6. doi: 10.1111/j.1600-0463.2005.apm1130101.x
  • Zargoosh, Z., Ghavam, M., Bacchetta, G. & Tavili, A. (2019). Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Report. 9(1): 16021. doi: 10.1038/s41598-019-52605-8
  • Moradi, H., Ghavam, M., Tavili, A. (2020). Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss in different ages of growth. Biotechnol. Report. 25: e00408. doi: 10.1016/j.btre.2019.e00408
  • EMA. (2020). Assessment report on Thymus vulgaris L., Thymus zygis. L., aetheroleum. https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-thymus-vulgaris-l-thymus-zygis-l-aetheroleum-revision-1_en.pdf
  • Kachur, K., Suntres, Z. (2020). The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci Nutri. 60(18): 3042-3053. doi: 10.1080/10408398.2019.1675585
  • Liu, Z., Lin, D., Shen, R., Zhang, R., Liu, L., Yang, X. (2021). Konjac glucomannan-based edible films loaded with thyme essential oil: Physical properties and antioxidant-antibacterial activities. Food Pack. Shelf Life. 29: 100700. doi: 10.1016/j.fpsl.2021.100700
  • Walczak, M., Michalska-Sionkowska, M., Olkiewicz, D., Tarnawska, P., Warżyńska, O. (2021). Potential of carvacrol and thymol in reducing biofilm formation on technical surfaces. Molecules. 26(9):2723. doi: 10.3390/molecules26092723
  • Inouye, S., Takizawa, T., Yamaguchi, H. (2001). Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicro. Chemother. 47(5): 565-573. doi: 10.1093/jac/47.5.565
  • İşcan, G., Ki̇ri̇mer, N., Kürkcüoǧlu, M.N., Başer, H.C., Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. J. Agricult. Food Chem. 50(14): 3943-3946. doi: 10.1021/jf011476k
  • Sahoo, M.R., Marakanam, S.U., Varier, R.R. (2022). Development and evaluation of essential oil-based lozenges using menthol and eucalyptus and in vitro evaluation of their antimicrobial activity in S. aureus and E. coli. Res. J. Phar. Technol. 15(11): 5283-5288. doi: 10.52711/0974-360X.2022.00890
  • Doudi, M., Yahyaabadi, S., Mosafa, E. (2014). In-vitro antibacterial properties of sage (Salvia officinalis) ethanol extract against multidrug resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Zah. J. Res. Med. Sci. 16(10).
  • EMA. (2016). Assessment report on Salvia officinalis L., folium and Salvia officinalis L., aetheroleum. https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-salvia-officinalis-l-folium-and-salvia-officinalis-l-aetheroleum-revision-1_en.pdf.
  • Ghavam, M., Bacchetta, G., Castangia, I., Manca, M.L. (2022). Evaluation of the composition and antimicrobial activities of essential oils from four species of Lamiaceae Martinov native to Iran. Sci. Report. 12(1): 17044. doi: 10.1038/s41598-022-21509-5
  • Ghavam, M. (2023). Phytochemical analysis and antibacterial/antifungal activity of the essential oil of Phlomis olivieri Benth in Iran. Inflammopharmacology. 1-12.
  • Ghavam, M., Manca, M.L., Manconi, M., Bacchetta, G. (2020). Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Sci. Report. 10(1): 15647. doi: 10.1038/s41598-020-73193-y
  • Hussein, H.J., Kamal, S.A., Sahi, N.M. (2020). Antibacterial efficacy of the seed extract of saliva hispanica l. against pathogenic bacteria isolated from diarrhea cases. Biochem. Cell. Arch. 20(2): 3491-4.
  • Horiuchi, K., Shiota, S., Hatano, T., Yoshida, T., Kuroda, T., Tsuchiya, T. (2007). Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol. Pharm Bulletin. 30(6): 1147-1149. doi: 10.1248/bpb.30.1147

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.