53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel anti-candidiasis cream formulation based on Melissa officinalis and Lavandula stoechas essential oils synergism

, , , , , & show all
Pages 510-524 | Received 10 Dec 2023, Accepted 11 Feb 2024, Published online: 20 Feb 2024

References

  • Brown, G.D., Denning, D.W., Gow, N.A., Levitz, S.M., Netea, M.G., and White, T.C. (2012). Hidden killers: human fungal infections. Sci. Transl. Med. 4(165): 165rv13-165rv13. doi: 10.1126/scitranslmed.3004404
  • Ksiezopolska, E., and Gabaldón, T. (2018). Evolutionary emergence of drug resistance in Candida opportunistic pathogens. Genes. 9(9): 461. doi: 10.3390/genes9090461
  • Girois, S.B., Chapuis, F., Decullier, E., and Revol, B.G.P. (2006). Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. European Eur. J. Clin. Microbiol. 25(2): 138-149. doi: 10.1007/s10096-005-0080-0
  • Pfaller, M.A. (2012). Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 125(1): S3-S13. doi: 10.1016/j.amjmed.2011.11.001
  • Verma, P.S., Singh, A., Rahaman, L., and Bahl, J.R. (2015). Lemon balm (Melissa officinalis L.) An herbal medicinal plant with broad therapeutic uses and cultivation practices: a review. IJRAMR. 2: 928-33.
  • Bousta, D., and Farah, A. (2020). A Phytopharmacological review of a Mediterranean plant: Lavandula stoechas L. Clin. Phytoscience. 6(1): 1-9. doi: 10.1186/s40816-019-0148-5
  • Ebadollahi, A., Ziaee, M., and Palla, F. (2020). Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Mol. 25(7): 1556. doi: 10.3390/molecules25071556
  • El-Nashar, H.A., Adel, M., El-Shazly, M., Yahia, I.S., El Sheshtawy, H.S., Almalki, A.A., and Ibrahim, N. (2022). Chemical composition, antiaging activities and molecular docking studies of essential oils from Acca sellowiana (Feijoa). Chem. Biodivers. 19(9): e202200272. doi: 10.1002/cbdv.202200272
  • Ashmawy, N.S., Gad, H.A., and El-Nashar, H.A. (2023). Comparative study of essential oils from different organs of Syzygium cumini (Pamposia) based on GC-MS chemical profiling and in vitro antiaging activity. Mol. 28(23): 7861. doi: 10.3390/molecules28237861
  • Rabie, O., El-Nashar, H.A., Majrashi, T.A., Al-Warhi, T., El Hassab, M.A., Eldehna, W.M., and Mostafa, N.M. (2023). Chemical composition, seasonal variation and antiaging activities of essential oil from Callistemon subulatus leaves growing in Egypt. J. Enzyme Inhib. Med. Chem. 38(1): 2224944. doi: 10.1080/14756366.2023.2224944
  • Mimica-Dukic, N., Bozin, B., Sokovic, M., and Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 52(9): 2485-2489. doi: 10.1021/jf030698a
  • Abdellatif, F., Boudjella, H., Zitouni, A., and Hassani, A. (2014). Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L. EXCLI Journal. 13: 772.
  • Soković, M., and Van Griensven, L.J. (2006). Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur. J. Plant Pathol. 116(3): 211-224. doi: 10.1007/s10658-006-9053-0
  • Stević, T., Berić, T., Šavikin, K., Soković, M., Gođevac, D., Dimkić, I., and Stanković, S. (2014). Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Ind. Crops Prod. 55: 116-122. doi: 10.1016/j.indcrop.2014.02.011
  • Dadalioǧlu, I., and Evrendilek, G.A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. Agric. Food Chem. 52(26): 8255-8260. doi: 10.1021/jf049033e
  • Baser, K.H.C., and Buchbauer, G. (2009). Handbook of essential oils: science, technology, and applications. CRC press, https://doi.org/10.1201/9781420063165.
  • Ouedrhiri, W., Mounyr, B., Harki, E.H., Moja, S., and Greche, H. (2017). Synergistic antimicrobial activity of two binary combinations of marjoram, lavender, and wild thyme essential oils. Int. J. Food Prop. 20(12): 3149-3158. doi: 10.1080/10942912.2017.1280504
  • Reyes-Jurado, F., Cervantes-Rincón, T., Bach, H., López-Malo, A., and Palou, E. (2019). Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 131: 90-95. doi: 10.1016/j.indcrop.2019.01.036
  • National Institute of Standards and Technology. (2014). PC Version of the Mass Spectral Library; Norwalk: Connecticut, CT, USA.
  • Adams, R.P. (2007). Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured: Carol Stream, Illinois, IL, USA, 455.
  • Bauer, A.W., Kirby, W.M.M., Sherris, J.C., and Turck, M. (1966). Antibiotic susceptibility testing by a standardized disk method. Amer. J. Clin. Path. 45: 493-496. doi: 10.1093/ajcp/45.4_ts.493
  • Grover, R.K., and Moore, J.D. (1962). Toxicometric studies of fungicides against brown rot organisms Sclerotinia fructicola and S. laxa. Phytopathol. 52: 876-880.
  • Dakhlaoui, S., Wannes, W.A., Sari, H., Ben Hmida, M., Frouja, O., Limam, H., Tammar, S., Bachkouel, S., Ben Jemaa, M., Jallouli, S., Hessini, K., and Msaada, K. (2022). Combined effect of essential oils from lavender (Lavandula officinalis L.) aerial parts and coriander (Coriandrum L.) seeds on antioxidant, anti-diabetic, anti-cancer and anti-inflammatory activities. J. Essent. Oil-Bear. Plants. 25(1): 188-199. doi: 10.1080/0972060X.2022.2049892
  • Bouyahya, A., Abrini, J., Bakri, Y., and Dakka, N. (2017). Screening phytochimique et évaluation de l’activité antioxydante et antibactérienne des extraits d’Origanum compactum. Phytothérapie. 15(6): 379-383. doi: 10.1007/s10298-017-1101-8
  • Pouyanfar, E., Hadian, J., Akbarzade, M., Hatami, M., Kanani, M.R., and Ghorbanpour, M. (2018). Analysis of phytochemical and morphological variability in different wild-and agro-ecotypic populations of Melissa officinalis L. growing in northern habitats of Iran. Ind. Crops Prod. 112: 262-273. doi: 10.1016/j.indcrop.2017.12.008
  • Sadraei, H., Ghannadi, A., and Malekshahi, K. (2003). Relaxant effect of essential oil of Melissa officinalis and citral on rat ileum contractions. Fitoterapia. 74(5): 445-452. doi: 10.1016/S0367-326X(03)00109-6
  • Carrasco, A., Ortiz-Ruiz, V., Martinez-Gutierrez, R., Tomas, V., and Tudela, J. (2015). Lavandula stoechas essential oil from Spain: Aromatic profile determined by gas chromatography-mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities. Ind. Crops Prod. 73: 16-27. doi: 10.1016/j.indcrop.2015.03.088
  • Yakoubi, R., Megateli, S., Sadok, T.H., Bensouici, C., and Bağci, E. (2021). A synergistic interactions of Algerian essential oils of Laurus nobilis L., Lavandula stoechas L. and Mentha pulegium L. on anticholinesterase and antioxidant activities. Biocatal. Agric. Biotechnol. 31: 101891. doi: 10.1016/j.bcab.2020.101891
  • Adinee, J., Piri, K., and Karami, O. (2008). Essential oil component in flower of lemon balm (Melissa officinalis L.). Am. J. Biochem. Biotechnol. 4(3): 277-278. doi: 10.3844/ajbbsp.2008.277.278
  • Alizadeh Behbahani, B., and Shahidi, F. (2019). Melissa officinalis essential oil: Chemical compositions, antioxidant potential, total phenolic content and antimicrobial activity. Nutr. Food Sci. 6(1): 17-25.
  • Rădulescu, M., Jianu, C., Lukinich-Gruia, A. T., Mioc, M., Mioc, A., Șoica, C., and Stana, L.G. (2021). Chemical composition, in vitro and in silico antioxidant potential of Melissa officinalis subsp. officinalis essential oil. Antioxidants. 10(7): 1081. doi: 10.3390/antiox10071081
  • Moradkhani, H., Sargsyan, E., Bibak, H., Naseri, B., Sadat-Hosseini, M., Fayazi-Barjin, A., and Meftahizade, H. (2010). Melissa officinalis L., a valuable medicine plant: A review. J. Med. Plant Res. 4(25): 2753-2759.
  • Souihi, M., Amri, I., Souissi, A., Hosni, K., Brahim, N.B., and Annabi, M. (2020). Essential oil and fatty acid composition of Melissa officinalis L. Prog. Nutr. 22: 253-258.
  • Hussein, A.H.S.A., Sabra, A.S., Gendy, A.S.H., and Astatkie, T. (2018). Essential oil content and concentration of constituents of lemon balm (Melissa officinalis L.) at different harvest dates. J. Essent. Oil-Bear. Plants. 21(5): 1410-1417. doi: 10.1080/0972060X.2018.1553636
  • Benabdelkader, T., Zitouni, A., Guitton, Y., Jullien, F., Maitre, D., Casabianca, H., Legendre, L., and Kameli, A. (2011). Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties. Chem. Biodivers. 8(5): 937-953. doi: 10.1002/cbdv.201000301
  • Amara, N., Boukhatem, M.N., Ferhat, M.A., Kaibouche, N., Laissaoui, O., and Boufridi, A. (2017). Applications potentielles de l’huile essentielle de lavande papillon (Lavandula stoechas L.) comme conservateur alimentaire naturel. Phytothérapie. 16: 164-172. doi: 10.3166/phyto-2019-0154
  • Baali, F., Boumerfeg, S., Napoli, E., Boudjelal, A., Righi, N., Deghima, A., Baghiani, A., and Ruberto, G. (2019). Chemical composition and biological activities of essential oils from two wild Algerian medicinal plants: Mentha pulegium L. and Lavandula stoechas L. J. Essent. Oil-Bear. Plants. 22(3): 821-837. doi: 10.1080/0972060X.2019.1642800
  • Selmi, S., Rtibi, K., Grami, D., Sebai, H. and Marzouki, L. (2018). Lavandula stoechas essential oils protect against Malathion-induces reproductive disruptions in male mice. Lipids Health Dis. 17(1): 1-13. doi: 10.1186/s12944-018-0891-5
  • Vokou, D., Chalkos, D., Karamanlidou, G., and Yiangou, M. (2002). Activation of soil respiration and shift of the microbial population balance in soil as a response to Lavandula stoechas essential oil. J. Chem. Ecol. 28(4): 755-768. doi: 10.1023/A:1015236709767
  • Boukhatem, M.N., Sudha, T., Darwish, N.H., Chader, H., Belkadi, A., Rajabi, M., Houche, A., Benkebailli, F., Oudjida, F., and Mousa, S.A. (2020). A new eucalyptol-rich lavender (Lavandula stoechas L.) essential oil: Emerging potential for therapy against inflammation and cancer. Molecules. 25(16): 3671. doi: 10.3390/molecules25163671
  • Napoli, E.M., and Ruberto, G. (2012). Sicilian aromatic plants: From traditional heritage to a new agro-industrial exploitation. Spices: Types, Uses and Health Benefits; Kralis. JF. Ed, 1-56.
  • Crisp, P.A., Ganguly, D., Eichten, S.R., Borevitz, J.O., and Pogson, B.J. (2016). Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci adv. 2(2): e1501340. doi: 10.1126/sciadv.1501340
  • Hechachna, H., Benfekih, L.A., Gourine, N., and Yousfi, M. (2023). Seasonal variation of yield, chemical composition and antimicrobial activity of Teucrium polium L. essential oil growing in the south of Algeria. J. Essent. Oil-Bear. Plants. 26(5): 1208-1219. doi: 10.1080/0972060X.2023.2255598
  • Miraj, S., Rafieian-Kopaei, and Kiani, S. (2017). Melissa officinalis L: A Review study with an antioxidant prospective. Journal of Evidence-Based Complementary & Alternative Medicine. 22(3): 385-394. doi: 10.1177/2156587216663433
  • Abdel-Naime, W.A., Fahim, J.R., Fouad, M.A., and Kamel, M.S. (2019). Antibacterial, antifungal, and GC-MS studies of Melissa officinalis. S. Afr. J. Bot. 124: 228-234. doi: 10.1016/j.sajb.2019.05.011
  • Uwineza, P.A., Urbaniak, M., Bryła, M., Stepien, Ł., Modrzewska, M., and Waśkiewicz, A. (2022). In vitro effects of lemon balm extracts in reducing the growth and mycotoxins biosynthesis of Fusarium culmorum and F. proliferatum. Toxins. 14(5): 355. doi: 10.3390/toxins14050355
  • Wölbling, R.H., and Leonhardt, K. (1994). Local therapy of herpes simplex with dried extract from Melissa officinalis. Int. J. Phytomedicine. 1(1): 25-31. doi: 10.1016/S0944-7113(11)80019-X
  • Mazzanti, G., Battinelli, L., Pompeo, C., Serrilli, A.M., Rossi, R., Sauzullo, I., Mengoni, F., and Vullo, V. (2008). Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Nat. Prod. Res. 22(16): 1433-1440. doi: 10.1080/14786410802075939
  • Shi, C., Song, K., Zhang, X., Sun, Y., Sui, Y., Chen, Y., Jia, Z., Sun, H., Sun, Z., and Xia, X. (2016). Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. Plos one. 11(7): e0159006. doi: 10.1371/journal.pone.0159006
  • Cai, R., Hu, M., Zhang, Y., Niu, C., Yue, T., Yuan, Y., and Wang, Z. (2019). Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. LWT. 106: 50-56. doi: 10.1016/j.lwt.2019.02.059
  • Aguiar, R.W.D.S., Ootani, M.A., Ascencio, S.D., Ferreira, T.P., Santos, M.M.D., and Santos, G.R.D. (2014). Fumigant antifungal activity of Corymbia citriodora and Cymbopogon nardus essential oils and citronellal against three fungal species. Sci. World J. 2014.
  • Nakahara, K., Alzoreky, N.S., Yoshihashi, T., Nguyen, H.T., and Trakoontivakorn, G. (2013). Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). JARQ. 37(4): 249-252. doi: 10.6090/jarq.37.249
  • Bosnić, T., Softić, D., and Grujić-Vasić, J. (2006). Antimicrobial activity of some essential oils and major constituents of essential oils. Acta Med Acad. 35(1): 9-14.
  • Hendry, E.R., Worthington, T., Conway, B.R., and Lambert, P.A. (2009). Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J. Antimicrob. Chemother. 64(6): 1219-1225. doi: 10.1093/jac/dkp362
  • Savelev, S., Okello, E., Perry, N.S.L., Wilkins, R.M., and Perry, E.K. (2003). Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol Biochem Behav. 75(3): 661-668. doi: 10.1016/S0091-3057(03)00125-4
  • Stefanovic, O., and Comic, L. (2012). Synergistic antibacterial interaction between Melissa officinalis extracts and antibiotics. J. Appl. Pharm. Sci. 2(1): 01-05.
  • Zidan, A.S., Kamal, N., Alayoubi, A., Seggel, M., Ibrahim, S., Rahman, Z., Cruz, C.N., and Ashraf, M. (2017). Effect of isopropyl myristate on transdermal permeation of testosterone from carbopol gel. J. Pharm. Sci. 106(7): 1805-1813. doi: 10.1016/j.xphs.2017.03.016
  • Hui, M., Quan, P., Yang, Y., and Fang, L. (2016). The effect of ion-pair formation combined with penetration enhancers on the skin permeation of loxoprofen. Drug Deliv. 23(5): 1550-1557.
  • Danby, C.S., Boikov, D., Rautemaa-Richardson, R., and Sobel, J.D. (2012). Effect of pH on in vitro susceptibility of Candida glabrata and Candida albicans to 11 antifungal agents and implications for clinical use. J. Antimicrob. Agents. 56(3): 1403-1406. doi: 10.1128/AAC.05025-11
  • Verma, S., and Utreja, P. (2018). Transethosomes of econazole nitrate for transdermal delivery: Development, in-vitro characterization, and ex-vivo assessment. Pharm. Nanotechnol. 6(3): 171-179. doi: 10.2174/2211738506666180813122102
  • Serra, E., Saubade, F., Ligorio, C., Whitehead, K., Sloan, A., Williams, D.W., and Malic, S. (2020). Methylcellulose hydrogel with Melissa officinalis essential oil as a potential treatment for oral candidiasis. Microorganisms. 8(2): 215. doi: 10.3390/microorganisms8020215
  • Ayana, B., and Turhan, K.N. (2009). Use of antimicrobial methylcellulose films to control Staphylococcus aureus during storage of Kasar cheese. Packaging Technology and Science. Int J. 22(8): 461-469. doi: 10.1002/pts.870
  • Campos, D., Piccirillo, C., Pullar, R.C., Castro, P.M., and Pintado, M.M. (2014). Characterization and antimicrobial properties of food packaging methylcellulose films containing stem extract of Ginja cherry. J. Sci. Food Agric. 94(10): 2097-2103. doi: 10.1002/jsfa.6530
  • da Cruz, R.C.D., da Silva Carvalho, K., Costa, R.J.O., da Silva, P.A., e Silva, S.L.D. C., Gualberto, S.A., a Gusmão, N.B., and de Souza, I.A. (2020). Phytochemical and toxicological evaluation of a blend of essential oils of Croton species on Aedes aegypti and Mus musculus. S. Afr. J. Bot. 132: 188-195. doi: 10.1016/j.sajb.2020.03.040
  • Sharma, K., Guleria, S., Razdan, V.K., and Babu, V. (2020). Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. 154: 112569. doi: 10.1016/j.indcrop.2020.112569

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.