34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemical composition, enzyme inhibitory activities, and molecular docking studies of essential oil of Knema globularia leaves from Vietnam

, , , , ORCID Icon, ORCID Icon, , , , & show all
Pages 584-593 | Received 25 Dec 2023, Accepted 23 Feb 2024, Published online: 03 Mar 2024

References

  • Chi, V.V. (2012). Vietnamese Medicinal Plants Dictionary. Hanoi Medical Publishing House.
  • Pham, H.H. (1999). An illustrated the flora of Vietnam. Tre Publishing House.
  • Salleh, W., Ahmad, F. (2017). Phytochemistry and biological activities of the genus Knema (Myristicaceae). Pharm Sci. 23(4): 249-255. doi: 10.15171/PS.2017.37
  • Pinto, M.M., Kijjoa, A., Gutiérrez, A.B., Herz, W. (1990). Lignans and other constituents of Knema furfuracea. Phytochem. 29(6): 1985-1988. doi: 10.1016/0031-9422(90)85052-H
  • Sriphana, U., Yenjai, C., Koatthada, M. (2016). Cytotoxicity of chemical constituents from the roots of Knema globularia. Phytochem. Lett. 16(2016): 129-133. doi: 10.1016/j.phytol.2016.03.010
  • Chuenban, C., Sombatsri, A., Sribuhom, T., Pornchoo, C., Prawan, A., Tontapha, S., Yenjai, C. (2021). Knecorticosanones C-H from the fruits of Knema globularia (Lam.) warb. RSC Adv. 11(7): 4097-4103. doi: 10.1039/D0RA10498A
  • Pham, T.V., Bach, H.K.T., Ho, D.V., Nguyen, B.C. (2021). Chemical constituents from the Knema globularia fruits and their in vitro cytotoxicity. Nat. Prod. Res. 36(1): 256-262. doi: 10.1080/14786419.2020.1777416
  • Sriphana, U., Yenjai, C., Suthiwong, J., Poopasit, K. (2022). A new diarylhexane and two new diarylpropanols from the roots of Knema globularia. Nat. Prod. Res. 36(7): 1741-1748. doi: 10.1080/14786419.2020.1815736
  • Le, T.K.D., Danova, A., Aree, T., Duong, T.H., Koketsu, M., Ninomiya, M., Chavasiri, W. (2022). α-Glucosidase inhibitors from the Stems of Knema globularia. J. Nat. Prod. 85(4): 776-786. doi: 10.1021/acs.jnatprod.1c00765
  • Thinh, B.B., Khoi, N.T., Doudkin, R.V., Thin, D.B., Ogunwande, I.A. (2023). Chemical composition of essential oil and antioxidant activity of the essential oil and methanol extracts of Knema globularia (Lam.) Warb. from Vietnam. Nat. Prod. Res. 37(10): 1625-1631. doi: 10.1080/14786419.2022.2103698
  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/quadrupolemass spectrometry, Allured Publ., Carol Stream, IL, USA.
  • Vu, D. (2023). Effects of extraction solvents on phytochemicals and bioactivities of Ganoderma lucidum. Egypt J. Chem. 66(9): 581-588
  • Vu, D. (2022). Assessing the differences in phenolics, antioxidant and anti-tyrosinase activities of spent coffee ground fractions. Trop. J. Nat. Prod. Res. 6(4): 558-562.
  • Meng, X.Y., Zhang, H.X., Mezei, M., Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 7(2): 146-157. doi: 10.2174/157340911795677602
  • Trott, O., Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2): 455-461. doi: 10.1002/jcc.21334
  • Eberhardt, J., Santos-Martins, D., Tillack, A.F., Forli, S. (2021). AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61(8): 3891-3898. doi: 10.1021/acs.jcim.1c00203
  • Tysoe, C.R., Caner, S., Calvert, M.B., Win-Mason, A., Brayer, G.D., Withers, S.G. (2019). Synthesis of montbretin A analogues yields potent competitive inhibitors of human pancreatic α-amylase. Chem. Sci. 10(48): 11073-11077. doi: 10.1039/C9SC02610J
  • Lai, X., Wichers, H.J., Soler-Lopez, M., Dijkstra, B.W. (2017). Structure of human tyrosinase related protein 1 reveals a binuclear zinc active site important for melanogenesis. Angew. Chem. Int. Ed. 56(33): 9812-9815. doi: 10.1002/anie.201704616
  • Caner, S., Brayer, G.D. (2016). Human pancreatic alphα-amylase in complex with mini-montbretin a. Can. Inst. Health Res. (CIHR).
  • Halgren, T.A. (1999). MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 20(7): 720-729. doi: 10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X
  • Figueiredo, A.C., Barroso, J.G., Pedro, L.G., Scheffer, J.J. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flav. Fragr. J. 23(4): 213-226. doi: 10.1002/ffj.1875
  • Salleh, W., Anuar, M.Z.A., Khamis, S., Nafiah, M.A., Sulain, M.D. (2021). Chemical investigation and biological activities of the essential oil of Knema kunstleri Warb. from Malaysia. Nat. Prod. Res. 35(13): 2279-2284. doi: 10.1080/14786419.2019.1669027
  • Salihu, A.S., Salleh, W., Ogunwa, T.H. (2023). Chemical composition, acetylcholinesterase inhibition and molecular docking studies of essential oil from Knema hookeriana Warb.(Myristicaceae). Nat. Prod. Res. 1-6. doi: 10.1080/14786419.2023.2184359
  • Thin, D.B., Thinh, B.B., Igoli, J.O. (2023). Chemical Composition and Biological Activity of Essential Oil of Knema pierrei. Chem. Nat. Compd. 59: 584-586. doi: 10.1007/s10600-023-04061-0
  • Barman, R., Saikia, J., Sarmah, P., Konwar, P., Kumar, M., Bora, P.K., Banik, D. (2023). Oxygenated sesquiterpenes, molecular docking, and the trait-linked occurrence of essential oil in Knema angustifolia (Roxb.) Warb.(Myristicaceae). South Afr. J. Bot. 159: 617-626. doi: 10.1016/j.sajb.2023.06.030
  • Salihu, A.S., Salleh, W. (2023). Chemical composition, anti-tyrosinase activity and molecular docking studies of Knema malayana Warb. J. Essent. Oil-Bear. Pl. 26(2): 253-260. doi: 10.1080/0972060X.2023.2191792
  • Faridahanim, M.J., Mohamad, J.M., Nik M.M., Asmah, A., Hadiani, N.I. (2016). Antidiabetic effects of Knema glauca leaf extract toward inhibitions of α-amylase and α-glucosidase assays. J. Teknol. 78(5-3): 103-108
  • Prabha, B., Neethu, S., Krishnan, S.L., Sherin, D.R., Madhukrishnan, M., Ananthakrishnan, R., Radhakrishnan, K.V. (2018). Antidiabetic potential of phytochemicals isolated from the stem bark of Myristica fatua Houtt. var. magnifica (Bedd.) Sinclair. Bioorg. Med. Chem. 26(12): 3461-3467. doi: 10.1016/j.bmc.2018.05.020
  • Trifan, A., Zengin, G., Koronα-Glowniak, I., Skalicka-Woźniak, K., Luca, S.V. (2023). Essential oils and sustainability: In vitro bioactivity screening of Myristica fragrans Houtt. Post-Distillation By-Products. Plants. 12(9): 1741.
  • Sarikurkcu, C., Uren, M.C., Kocak, M.S., Cengiz, M., Tepe, B. (2016). Chemical composition, antioxidant, and enzyme inhibitory activities of the essential oils of three Phlomis species as well as their fatty acid compositions. Food Sci. Biotechnol. 25: 687-693. doi: 10.1007/s10068-016-0120-9
  • Adefegha, S.A., Olasehinde, T.A., Oboh, G. (2017). Essential oil composition, antioxidant, antidiabetic and antihypertensive properties of two Afromomum species. J. Oleo Sci. 66(1): 51-63. doi: 10.5650/jos.ess16029
  • Ahamad, J., Uthirapathy, S. (2021). GC/MS profile and in-vitro α-glucosidase inhibitory activity of essential oil of Eucalyptus camaldulensis Dehnh collected from (Erbil) Iraq. Curr. Bioact. Compd. 17(5): 47-52. doi: 10.2174/1573407216999200723112252
  • Nguyen, T.K., Tran, L.T.T., Viet, D.H., Thai, P.H., Ha, T.P., Ty, P.V., Huu, D.T.T. (2023). Xanthine oxidase, α-glucosidase and α-amylase inhibitory activities of the essential oil from Piper lolot: In vitro and in silico studies. Heliyon. 9(8): e19148. doi: 10.1016/j.heliyon.2023.e19148
  • Masse, M.O., Duvallet, V., Borremans, M., Goeyens, L. (2001). Identification and quantitative analysis of kojic acid and arbutine in skin-whitening cosmetics. Int. J. Cosmet. Sci. 23(4): 219-232. doi: 10.1046/j.1467-2494.2001.00074.x
  • Matsuura, R., Ukeda, H., Sawamura, M. (2006). Tyrosinase inhibitory activity of citrus essential oils. J. Agric. Food Chem. 54(6): 2309-2313. doi: 10.1021/jf051682i
  • Yang, C.H., Huang, Y.C., Tsai, M.L., Cheng, C.Y., Liu, L.L., Yen, Y.W., Chen, W.L. (2015). Inhibition of melanogenesis by β-caryophyllene from lime mint essential oil in mouse B16 melanoma cells. Int. J. Cosmet. Sci. 37(5): 550-554. doi: 10.1111/ics.12224
  • El Omari, N., Mrabti, H.N., Benali, T., Ullah, R., Alotaibi, A., Abdullah, A.D.I., Bouyahya, A. (2023). Expediting multiple biological properties of limonene and α-pinene: Main bioactive compounds of Pistacia lentiscus L., essential oils. Front. Biosci. 28(9): 229. doi: 10.31083/j.fbl2809229
  • Salihu, A.S., Salleh, W., Setzer, W.N. (2023). Essential oil composition, anti-tyrosinase activity, and molecular docking studies of Knema intermedia Warb. (Myristicaceae). Z. Naturforsch. C - J. Biosci. 78(7-8): 293-298. doi: 10.1515/znc-2023-0003
  • Tran-Trung, H., Thuy, P.T., Thuan, V.T., Ha, N.X., Van, H.N., Nguyen-Ngoc, H., Giang, L.D. (2023). Chemical composition and antimicrobial activity of essential oil obtained from the rhizomes of Kaempferia champasakensis: in vitro and molecular docking studies. J. Essent. Oil-Bear. Pl. 26(4): 958-969. doi: 10.1080/0972060X.2023.2251512
  • Viet, P.T., Cuong, L.H., Hong, H.T.T., Luyen, N.D., Ha, N.X., Xuan, H.T., The, N.S. (2023). Essential oils of the leaves of Epaltes australis Less. and Lindera myrrha (Lour.) Merr.: Chemical composition, antimicrobial, anti-inflammatory, tyrosinase inhibitory, and molecular docking studies. Chem. Biodivers. 20(12): e202301192. doi: 10.1002/cbdv.202301192
  • Dandekar, P.D., Kotmale, A.S., Chavan, S.R., Kadlag, P.P., Sawant, S.V., Dhavale, D.D., RaviKumar, A. (2021). Insights into the inhibition mechanism of human pancreatic α-amylase, a type 2 diabetes target, by dehydrodieugenol B isolated from Ocimum tenuiflorum. ACS Omega. 6(3): 1780-1786. doi: 10.1021/acsomega.0c00617
  • Zhang, X., Caner, S., Kwan, E., Li, C., Brayer, G.D., Withers, S.G. (2016). Evaluation of the significance of starch surface binding sites on human pancreatic α-amylase. Biochem. 55(43): 6000-6009. doi: 10.1021/acs.biochem.6b00992
  • El-Nashar, H.A., Eldehna, W.M., Al-Rashood, S.T., Alharbi, A., Eskandrani, R.O., Aly, S.H. (2021). GC/MS analysis of essential oil and enzyme inhibitory activities of Syzygium cumini (Pamposia) grown in Egypt: chemical characterization and molecular docking studies. Molecules. 26(22): 6984. doi: 10.3390/molecules26226984

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.