40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Antibacterial and antibiofilm activities of Thymus leptobotrys and Lavandula mairei essential oils against extended spectrum β-lactamase producing Enterobacteriaceae

, , , , , , , , , , & show all
Pages 356-373 | Received 22 May 2023, Accepted 26 Feb 2024, Published online: 04 Mar 2024

References

  • Nadell, C.D., Drescher, K., Wingreen, N.S. and Bassler, B.L. (2015). Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME. J. 9: 1700-1709. doi: 10.1038/ismej.2014.246
  • Potera, C. (1999). Forging a link between biofilms and disease. Science. 283: 1837-1839. doi: 10.1126/science.283.5409.1837
  • Lebeaux, D., Ghigo, J.M. and Beloin, C. (2014). Biofilm tolerance towards antibiotics: Mechanisms and treatment. J. des Anti-Infectieux. 16: 112-121. doi: 10.1016/j.antinf.2014.04.001
  • Lebeaux, D., Lucet, J.C. and Barbier, F.S. (2016). Nouvelles recommandations pour les infections associées au biofilm: implications en réanimation. Reanimation. 25: 308-317. doi: 10.1007/s13546-016-1182-7
  • Benner, K.W., Prabhakaran, P. and Lowros, A.S. (2014). Epidemiology of infections due to extended-spectrum β-lactamase-producing bacteria in a pediatric intensive care unit. J. Pediatr. Pharmacol. Ther. 19: 83-90.
  • Ray, S., Anand, D., Purwar, S., Samanta, A., Upadhye, K.V., Gupta, P. and Dhar, D. (2018). Association of high mortality with extended-spectrum β-lactamase (ESBL) positive cultures in community acquired infections. J. Crit. Care. 44: 255-260. doi: 10.1016/j.jcrc.2017.10.036
  • Borges, A., Abreu, A.C., Dias, C., Saavedra, M.J., Borges, F. and Simões, M. (2016). New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules. 21. doi: 10.3390/molecules21070877
  • Merghni, A., Noumi, E., Hadded, O., Dridi, N., Panwar, H., Ceylan, O., Mastouri, M. and Snoussi, M. (2018). Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb. Pathog. 118: 74-80. doi: 10.1016/j.micpath.2018.03.006
  • do Vale, J.P.C., de Freitas Ribeiro, L.H., de Vasconcelos, M.A., Sá-Firmino, N.C., Pereira, A.L., do Nascimento, M.F., Rodrigues, T.H.S., da Silva, P.T., de Sousa, K.C., da Silva, R.B., do Nascimento Neto, L.G., Saker-Sampaio, S., Bandeira, P.N., Santos, H.S., de Souza, E.B. and Teixeira, E.H. (2019). Chemical composition, antioxidant, antimicrobial and antibiofilm activities of Vitex gardneriana schauer leaves’s essential oil. Microb. Pathog. 135: 103608. doi: 10.1016/j.micpath.2019.103608
  • Septama, A.W., Tasfiyati, A.N., Kristiana, R. and Jaisi, A. (2022). Chemical profiles of essential oil from Javanese turmeric (Curcuma xanthorrhiza Roxb.), evaluation of its antibacterial and antibiofilm activities against selected clinical isolates. S. Afr. J. Bot. 146: 728-734. doi: 10.1016/j.sajb.2021.12.017
  • Benabdelkader, T., Zitouni, A., Guitton, Y., Jullien, F., Maitre, D., Casabianca, H., Legendre, L. and Kameli, A. (2011). Essential oils from wild populations of algerian Lavandula stoechas L.: Composition, chemical variability, and in vitro biological properties. Chem. Biodivers. 8: 937-953. doi: 10.1002/cbdv.201000301
  • El Hamdaoui, A., Msanda, F., Boubaker, H., Leach, D., Bombarda, I., Vanloot, P., El Aouad, N., Abbad, A., Boudyach, E.H., Achemchem, F., Elmoslih, A., Ait Ben Aoumar, A. and El Mousadik, A. (2018). Essential oil composition, antioxidant and antibacterial activities of wild and cultivated Lavandula mairei Humbert. Biochem. Syst. Ecol. 76: 1-7. doi: 10.1016/j.bse.2017.11.004
  • Fennane, M. and Tattou, M.I. (1998). Catalogue des plantes vasculaires rares, menacées ou endémiques du Maroc. Bocconea. Palerme.
  • Elbouny, H., Ouahzizi, I., Bakali, A.H., Sellam, K. and Alem, C. (2022). A review on Moroccan thyme species: ethnopharmacological, phytochemical, and biological aspects. Egypt. Pharm. J. 21(4): 401-410. doi: 10.4103/epj.epj_83_22
  • El Yaagoubi, M., Mechqoq, H., El Hamdaoui, A., Jrv Mukku, V., El Mousadik, A., Msanda, F. and El Aouad, N. (2021). A review on Moroccan Thymus species: Traditional uses, essential oils chemical composition and biological effects. J. Ethnopharmacol. 278: 114205. doi: 10.1016/j.jep.2021.114205
  • Abouri, M., Mousadik, A. El, Msanda, F., Boubaker, H., Saadi, B. and Cherifi, K. (2012). An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. Int. J. Med. Plant. Res. 1(7): 99-123.
  • El Asbahani, A., Jilale, A., Voisin, S.N., Aït Addi, E.H., Casabianca, H., El Mousadik, A., Hartmann, D.J. and Renaud, F.N.R. (2015). Chemical composition and antimicrobial activity of nine essential oils obtained by steam distillation of plants from the Souss-Massa Region (Morocco). J. Essent. Oil. Res. 27: 34-44. doi: 10.1080/10412905.2014.964426
  • Boubaker, H., Karim, H., El Hamdaoui, A., Msanda, F., Leach, D., Bombarda, I., Vanloot, P., Abbad, A., Boudyach, E.H. and Ait Ben Aoumar, A. (2016). Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Ind. Crops. Prod. 86: 95-101. doi: 10.1016/j.indcrop.2016.03.036
  • Laktib, A., Hassi, M., Hamadi, F., Mimouni, R., Bourouache, M., Bihadassen, B. and Alla, A.A. (2018). Identification and antibiotic resistance of nosocomial bacteria isolated from the hospital environment of two intensive care unit. Moroccan. J. Biol. 15(2018): 24-41.
  • Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. doi: 10.1128/jb.173.2.697-703.1991
  • Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.P. and Raoult, D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38: 3623-3630. doi: 10.1128/JCM.38.10.3623-3630.2000
  • CLSI. (2018). Performance standards for antimicrobial disk suspectibility tests, approved standard-eleventh edition. Clinical and Labo-ratory Standards Institue (pp. 2162-2914).
  • CA-SFM. (2015). Last accessed date: 2016 Jan 15. Available from: https://www.sfm-microbiologie.org
  • Garrec, H., Drieux-Rouzet, L., Golmard, J.L., Jarlier, V. and Robert, J. (2011). Comparison of nine phenotypic methods for detection of extended-spectrum β-lactamase production by Enterobacteriaceae. J. Clin. Microbiol. 49: 1048-1057. doi: 10.1128/JCM.02130-10
  • Barguigua, A., Otmani, F.El, Talmi, M., Bourjilat, F., Haouzane, F., Zerouali, K. and Timinouni, M. (2011). Characterization of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from the community in Morocco. J. Med. Microbiol. 60: 1344-1352. doi: 10.1099/jmm.0.032482-0
  • Laktib, A., Nayme, K., Hamdaoui, A.El, Timinouni, M., Hassi, M., Alla, A.A., Msanda, F., Bourouache, M., Yaagoubi, M.El, Mimouni, R., Bihadassen, B. and Hamadi, F. (2022). Antibacterial activity of Lavandula mairei humbert essential oil against carbapenem-resistant Acinetobacter baumannii. Mediterr. J. Infect. Microbes Antimicrob. 11.
  • Adams, R. and Sparkman, O. (2007). Review of identification of essential oil components by gas chromatography/mass spectrometry (pp. 469). Allured Publishing Corp, Carol Stream, IL.
  • Takahata, M., Mitsuyama, J., Yamashiro, Y., Yonezawa, M., Araki, H., Todo, Y., Minami, S., Watanabe, Y. and Narita, H. (1999). In vitro and in vivo antimicrobial activities of T-3811ME, a novel des- F(6)-quinolone. Antimicrob. Agents. Chemother. 43: 1077-1084. doi: 10.1128/AAC.43.5.1077
  • Bazargani, M.M. and Rohloff, J. (2016). Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control. 61: 156-164. doi: 10.1016/j.foodcont.2015.09.036
  • Moreira, M.R., Ponce, A.G., Del Valle, C.E. and Roura, S.I. (2005). Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT - Food Sci. Technol. 38 (5): 565-570. doi: 10.1016/j.lwt.2004.07.012
  • Freeman, D.J., Falkiner, F.R. and Keane, C.T. (1989). New method for detecting slime production by coagulase negative Staphylococci. J. Clin. Pathol. 42: 872-874. doi: 10.1136/jcp.42.8.872
  • Shadkam, S., Goli, H.R., Mirzaei, B., Gholami, M. and Ahanjan, M. (2021). Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran. Ann. Clin. Microbiol. Antimicrob. 20. doi: 10.1186/s12941-021-00418-x
  • Coffey, B.M. and Anderson, G.G. (2014). Biofilm formation in the 96-well microtiter plate. Methods Mol. Biol. 1149: 631-641. doi: 10.1007/978-1-4939-0473-0_48
  • Shrestha, L.B., Bhattarai, N.R. and Khanal, B. (2018). Comparative evaluation of methods for the detection of biofilm formation in coagulasenegative Staphylococci and correlation with antibiogram. Infect. Drug Resist. 11: 607-613. doi: 10.2147/IDR.S159764
  • Nostro, A., Roccaro, A.S., Bisignano, G., Marino, A., Cannatelli, M.A., Pizzimenti, F.C., Cioni, P.L., Procopio, F. and Blanco, A.R. (2007). Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 56: 519-523. doi: 10.1099/jmm.0.46804-0
  • Gori, A., Espinasse, F., Deplano, A., Nonhoff, C., Nicolas, M.H. and Struelens, M.J. (1996). Comparison of pulsed-field gel electrophoresis and randomly amplified DNA polymorphism analysis for typing extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. J. Clin. Microbiol. 34: 2448-2453. doi: 10.1128/jcm.34.10.2448-2453.1996
  • Collins, V.L., Marchaim, D., Pogue, J.M., Moshos, J., Bheemreddy, S., Sunkara, B., Shallal, A., Chugh, N., Eiseler, S., Bhargava, P., Blunden, C., Lephart, P.R., Memon, B.I., Hayakawa, K., Abreu-Lanfranco, O., Chopra, T., Munoz-Price, L.S., Carmeli, Y. and Kaye, K.S. (2012). Efficacy of ertapenem for treatment of bloodstream infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents. Chemother. 56: 2173-2177. doi: 10.1128/AAC.05913-11
  • Tal Jasper, R., Coyle, J.R., Katz, D.E. and Marchaim, D. (2015). The complex epidemiology of extended-spectrum β-lactamase-producing Enterobacteriaceae. Future. Microbiol. 10: 819-839. doi: 10.2217/fmb.15.16
  • Senard, O., Bouchand, F., Deconinck, L., Matt, M., Fellous, L., Rottman, M., Perronne, C., Dinh, A. and Davido, B. (2019). Efficacy of cefoxitin for the treatment of urinary tract infection due to extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates. Ther. Adv. Infect. Dis. 6: 204993611881105.
  • Paterson, D.L. and Bonomo, R.A. (2005). Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 18(4): 657-686. doi: 10.1128/CMR.18.4.657-686.2005
  • Cantón, R., González-Alba, J.M. and Galán, J.C. (2012). CTX-M enzymes: Origin and diffusion. Front. Microbiol. 3. doi: 10.3389/fmicb.2012.00110
  • Shin, J., Kim, D.H. and Ko, K.S. (2011). Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J. Infect. 63: 39-47. doi: 10.1016/j.jinf.2011.05.003
  • Pitout, J.D.D. and Laupland, K.B. (2008). Enterobacteriaceae : an emerging public-health concern. Lancet. Infect. Dis. 8: 159-166. doi: 10.1016/S1473-3099(08)70041-0
  • Coelho, A., Mora, A., Mamani, R., López, C., González-López, J.J., Larrosa, M.N., Quintero-Zarate, J.N., Dahbi, G., Herrera, A., Blanco, J.E., Blanco, M., Alonso, M.P., Prats, G. and Blanco, J. (2011). Spread of Escherichia coli O25b: H4-B2-ST131 producing CTX-M-15 and SHV-12 with high virulence gene content in Barcelona (Spain). J. Antimicrob. Chemother. 66: 517-526. doi: 10.1093/jac/dkq491
  • Liakopoulos, A., Mevius, D. and Ceccarelli, D. (2016). A review of SHV extended-spectrum β-lactamases: Neglected yet ubiquitous. Front. Microbiol. 7. doi: 10.3389/fmicb.2016.01374
  • Mulvey, M.R., Bryce, E., Boyd, D., Ofner-agostini, M., Christianson, S., Simor, A.E., Paton, S., Canadian, T. and Program, I.S. (2004). Ambler class a extended-spectrum beta-lactamase-producing. Society. 48: 1204-1214.
  • Asdadi, A., Moutaj, R., Hadek, M.E.L., Idrissi, L.M. and Chebli, B. (2014). Chemical polymorphism of populations of Thymus leptobotrys L. harvested from the Argan tree regions of Morocco, assessed by analysis of their essential oils, and its impact on their anticandidal and antioxidant activity. Int. J. Pharm. Sci. Invent. 3: 60-70. doi: 10.9790/6718-03096065
  • Jamali, C.A., El Bouzidi, L., Bekkouche, K., Lahcen, H., Markouk, M., Wohlmuth, H., Leach, D. and Abbad, A. (2012). Chemical composition and antioxidant and anticandidal activities of essential oils from different wild moroccan Thymus species. Chem. Biodivers. 9: 1188-1197. doi: 10.1002/cbdv.201200041
  • Oubihi, A., Ouryemchi, I., Nounah, I., Tarfaoui, K., Harhar, H., Ouhssine, M. and Guessous, Z. (2020). Chemical composition, antibacterial and antifungal activities of Thymus leptobotrys Murb essential oil. Adv. Tradit. Med. 20: 673-679. doi: 10.1007/s13596-020-00488-w
  • Sakkas, H., Gousia, P., Economou, V., Sakkas, V., Petsios, S. and Papadopoulou, C. (2016). In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates. J. Intercult. Ethnopharmacol. 5: 212-218. doi: 10.5455/jice.20160331064446
  • Ait Said, L., Zahlane, K., Ghalbane, I., El Messoussi, S., Romane, A., Cavaleiro, C. and Salgueiro, L. (2015). Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria. Nat. Prod. Res. 29: 582-585. doi: 10.1080/14786419.2014.954246
  • Sayout, A., Ouarhach, A., Dilagui, I., Soraa, N. and Romane, A. (2020). Antibacterial activity and chemical composition of essential oil from Lavandula tenuisecta Coss. ex Ball. an endemic species from Morocco. Eur. J. Integr. Med. 33: 101017. doi: 10.1016/j.eujim.2019.101017
  • Růžička, F., Holá, V., Votava, M., Tejkalová, R., Horvát, R., Heroldová, M. and Woznicová, V. (2004). Biofilm detection and the clinical significance of Staphylococcus epidermidis isolates. Folia. Microbiol. 49: 596-600. doi: 10.1007/BF02931540
  • Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A. and Iqbal, M. (2011). Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian J. Infect. Dis. 15: 305-311. doi: 10.1016/S1413-8670(11)70197-0
  • Halim, R.M.A., Kassem, N.N. and Mahmoud, B.S. (2018). Detection of biofilm producing Staphylococci among different clinical isolates and its relation to methicillin susceptibility. Open Access Maced. J. Med. Sci. 6: 1335-1341.
  • Jones, K. and Bradshaw, S.B. (1996). Biofilm formation by the Enterobacteriaceae : A comparison between Salmonella enteritidis, Escherichia coli and a nitrogenfixing strain of Klebsiella pneumoniae. J. Appl. Bacteriol. 80: 458-464. doi: 10.1111/j.1365-2672.1996.tb03243.x
  • Ramos-Vivas, J., Chapartegui-González, I., Fernández-Martínez, M., González-Rico, C., Fortún, J., Escudero, R., Marco, F., Linares, L., Montejo, M., Aranzamendi, M. and Muñoz, P. (2019). Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Sci. Rep. 9(1): 1-10. doi: 10.1038/s41598-019-45060-y
  • Piperaki, E.T., Syrogiannopoulos, G.A., Tzouvelekis, L.S. and Daikos, G.L. (2017). Klebsiella pneumoniae: Virulence, Biofilm and Antimicrobial Resistance. Pediatr. Infect. Dis. J. 36: 1002-1005. doi: 10.1097/INF.0000000000001675
  • Kerekes, E.B., Vidács, A., Takó, M., Petkovits, T., Vágvölgyi, C., Horváth, G., Balázs, V.L. and Krisch, J. (2019). Anti-biofilm effect of selected essential oils and main components on mono- and polymicrobic bacterial cultures. Microorganisms. 7. doi: 10.3390/microorganisms7090345
  • Benzaid, C., Tichati, L., Djeribi, R. and Rouabhia, M. (2019). Evaluation of the chemical composition, the antioxidant and antimicrobial activities of Mentha × piperita essential oil against microbial growth and biofilm formation. J. Essent. Oil-Bear. Pl. 22: 335-346. doi: 10.1080/0972060X.2019.1622456
  • Mohamed, S.H., Mohamed, M.S.M., Khalil, M.S., Azmy, M. and Mabrouk, M.I. (2018). Combination of essential oil and ciprofloxacin to inhibit/eradicate biofilms in multidrug-resistant Klebsiella pneumoniae. J. Appl. Microbiol. 125: 84-95. doi: 10.1111/jam.13755
  • Zygadlo, J.A., Zunino, M.P., Pizzolitto, R.P., Merlo, C., Omarini, A. and Dambolena, J.S. (2017). Antibacterial and anti-biofilm activities of essential oils and their components including modes of action. In Essential oils and nanotechnology for treatment of microbial diseases (pp. 99-126). CRC Press.
  • Rossi, C., Chaves-López, C., Serio, A., Casaccia, M., Maggio, F. and Paparella, A. (2020). Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Crit. Rev. Food Sci. Nutr. 62(8): 2172-2191. doi: 10.1080/10408398.2020.1851169
  • Nostro, A., Scaffaro, R., D’Arrigo, M., Botta, L., Filocamo, A., Marino, A. and Bisignano, G. (2013). Development and characterization of essential oil component-based polymer films: a potential approach to reduce bacterial biofilm. Appl. Microbiol. Biotechnol. 97: 9515-9523. doi: 10.1007/s00253-013-5196-z
  • Iseppi, R., Di Cerbo, A., Aloisi, P., Manelli, M., Pellesi, V., Provenzano, C., Camellini, S., Messi, P. and Sabia, C. (2020). In vitro activity of essential oils against planktonic and biofilm cells of extended-spectrum β-lactamase (ESBL)/carbapenamase-producing gram-negative bacteria involved in human nosocomial infections. Antibiotics. 9: 272. doi: 10.3390/antibiotics9050272
  • Alibi, S., Ben Selma, W., Ramos-Vivas, J., Smach, M.A., Touati, R., Boukadida, J., Navas, J. and Ben Mansour, H. (2020). Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Curr. Res. Transl. Med. 68: 59-66.
  • Millezi, A.F., Cardoso, M. das G., Alves, E. and Piccoli, R.H. (2013). Reduction of Aeromonas hidrophyla biofilm on stainless stell surface by essential oils. Braz. J. Microbiol. 44: 73-80. doi: 10.1590/S1517-83822013005000015
  • Saviuc, C.-M., Drumea, V., Olariu, L., Chifiriuc, M.-C., Bezirtzoglou, E. and Lazar, V. (2015). Essential oils with microbicidal and antibiofilm activity. Curr. Pharm. Biotechnol. 16: 137-151. doi: 10.2174/138920101602150112151549
  • Melo, R.S., Azevedo, Á.M.A., Pereira, A.M. G., Rocha, R.R., Cavalcante, R.M.B., Matos, M.N.C., Lopes, P.H.R., Gomes, G.A., Rodrigues, T.H.S., Dos Santos, H.S., Ponte, I.L., Costa, R.A., Brito, G.S., Catunda, F.E.A. and Carneiro, V.A. (2019). Chemical composition and antimicrobial effectiveness of Ocimum gratissimum L. essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules. 24(21): 10.3390/molecules24213864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.