1,849
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The ATL08 as a height reference for the global digital elevation models

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 327-346 | Received 13 Dec 2021, Accepted 02 Jun 2022, Published online: 07 Sep 2022

References

  • Abrams, M., R. Crippen, and H. Fujisada. 2020. “ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD).” Remote Sensing 12 (7): 1–12. doi:10.3390/rs12071156.
  • Arefi, H., and P. Reinartz. 2011. “Accuracy Enhancement of ASTER Global Digital Elevation Models Using ICESat Data.” Remote Sensing 3 (7): 1323–1343. doi:10.3390/rs3071323.
  • Asal, F. 2019. “Creation and Analysis of Earth’s Surface Roughness Maps from Airborne LiDar Measurements in Downtown Urban Landscape.” Journal of Geographic Information System 11 (02): 212–238. doi:10.4236/jgis.2019.112015.
  • Athmania, D., and H. Achour. 2014. “External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM V4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria.” Remote Sensing 6 (5): 4600–4620. doi:10.3390/rs6054600.
  • Bangen, S.G. 2013. “Comparison of Topographic Surveying Techniques in Streams.” MSc Diss., UTAH STATE UNIVERSITY Logan, Utah.
  • Boulton, S. J., and M. Stokes. 2018. “Which DEM is Best for Analyzing Fl Uvial Landscape Development in Mountainous Terrains ?” Geomorphology 310: 168–187. doi:10.1016/j.geomorph.2018.03.002.
  • Braun, A., and G. Fotopoulos. 2007. “Assessment of SRTM, ICESat, and Survey Control Monument Elevations in Canada.” Photogrammetric Engineering and Remote Sensing 73 (12): 1333–1342. doi:10.14358/PERS.73.12.1333.
  • Brenner, A.C., J.P. DiMarzio, and H.J. Zwally. 2007. “Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets.” IEEE Transactions on Geoscience and Remote Sensing 45 (2): 321–331. doi:10.1109/TGRS.2006.887172.
  • Brunt, K., T. Neumann, and C. Larsen. 2019. “Assessment of Altimetry Using Ground-Based GPS Data from the 88S Traverse, Antarctica, in Support of Icesat-2.” The Cryosphere 13: 579–590. doi:10.5194/tc-13-579-2019.
  • Carabajal, C.C., and J.P. Boy. 2020. “ICESat-2 Altimetry as Geodetic Control.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 43 (B3): 1299–1306. doi:10.5194/isprs-archives-XLIII-B3-2020-1299-2020.
  • Dandabathula, G., and M. Verma. 2020. “Evaluation of Best-Fit Terrain Elevation of Icesat-2 ATL08 Using DGPS Surveyed Points.” Journal of Applied Geodesy 14 (3): 2–3. doi:10.1515/jag-2020-0003.
  • Dong, Y., L. Zhang, H. Jiang, T. Balz, and M. Liao. 2021. “Cascaded Multi-Baseline Interferometry with Bistatic TerraSar-X/tandem-X Observations for DEM Generation.” ISPRS Journal of Photogrammetry and Remote Sensing 171: 224–237. doi:10.1016/j.isprsjprs.2020.11.012.
  • Farr, T.G., and M. Kobrick. 2000. “Shuttle Radar Topography Mission Produces a Wealth of Data.” Eos 81 (48): 583–585. doi:10.1029/EO081i048p00583.
  • Fricker, H.A., A. Borsa, B. Minster, C. Carabajal, K. Quinn, and B. Bills. 2005. “Assessment of ICESat Performance at the Salar de Uyuni, Bolivia.” Geophysical Research Letters 32 (21): 1–5. doi:10.1029/2005GL023423.
  • Guth, P. L. 2010. “Geomorphometric Comparison of Aster Gdem and Srtm.” In Geospatial Data and Geovisualization: Environment, Security, and Society, edited by M. Madden and E. Lynn Usery. Vol. 10. Orlando, FL: A special joint symposium of 1110 ISPRS Technical Commission IV & AutoCarto - ASPRS/ CaGIS 2010 Fall Specialty Conference, November 15-19. https://www.isprs.org/proceedings/XXXVIII/part4/files/Guth.pdf
  • Guth, P.L., and T.M. Geoffroy. 2021. “LiDar Point Cloud and ICESat-2 Evaluation of 1 Second Global Digital Elevation Models: Copernicus Wins.” Transactions in GIS 25 (5): 2245–2261. doi:10.1111/tgis.12825.
  • Henrys, P.A., and S.G. Jarvis. 2019. “Integration of Ground Survey and Remote Sensing Derived Data: Producing Robust Indicators of Habitat Extent and Condition.” Ecology and Evolution 9 (14): 8104–8112. doi:10.1002/ece3.5376.
  • Hsu, H., C. Huang, M. Jasinski, Y. Li, H. Gao, T. Yamanokuchi, C. Wang, et al. 2021. ”A Semi-Empirical Scheme for Bathymetric Mapping in Shallow Water by ICESat-2 and Sentinel-2 : A Case Study in the South China Sea”. ISPRS Journal of Photogrammetry and Remote Sensing 178: 1–19. 10.1016/j.isprsjprs.2021.05.012.
  • Hueso González, J., M. Bachmann, R. Scheiber, and G. Krieger. 2010. “Definition of Icesat Selection Criteria for Their Use as Height References for Tandem-X.” IEEE Transactions on Geoscience and Remote Sensing 48 (6): 2750–2757. doi:10.1109/TGRS.2010.2041355.
  • Lin, X., M. Xu, C. Cao, Y. Dang, B. Bashir, B. Xie, and Z. Huang. 2020. “Estimates of Forest Canopy Height Using a Combination of ICESat-2/ATLAS Data and Stereo-Photogrammetry.” Remote Sensing 12 (3649): 21. doi:10.3390/rs12213649.
  • Liu, A., X. Cheng, and Z. Chen. 2021. “Performance Evaluation of GEDI and ICESat-2 Laser Altimeter Data for Terrain and Canopy Height Retrievals.” Remote Sensing of Environment 264: 112571. doi:10.1016/j.rse.2021.112571.
  • Liu, M., S. Popescu, and L. Malambo. 2020. “Feasibility of Burned Area Mapping Based on ICESAT-2 Photon Counting Data.” Remote Sensing 12 (24): 18. doi:10.3390/RS12010024.
  • Liu, Z., J. Zhu, H. Fu, C. Zhou, and T. Zuo. 2020. “Evaluation of the Vertical Accuracy of Open Global Dems Over Steep Terrain Regions Using Icesat Data: A Case Study Over Hunan Province, China.” Sensors 20 (17): 1–16. doi:10.3390/s20174865.
  • Magruder, L., A. Neuenschwander, and B. Klotz. 2021. “Digital Terrain Model Elevation Corrections Using Space-Based Imagery and ICESat-2 Laser Altimetry.” Remote Sensing of Environment 264: 112621. doi:10.1016/j.rse.2021.112621.
  • Magruder, L. A., and K. M. Brunt. 2018. “Performance Analysis of Airborne Photon-Counting Lidar Data in Preparation for the ICESat-2 Mission.” IEEE Transactions on Geoscience and Remote Sensing 56 (5): 2911–2918. doi:10.1109/TGRS.2017.2786659.
  • NASA. 2015. “The Shuttle Radar Topography Mission (SRTM) Collection User Guide.” https://lpdaac.usgs.gov/sites/default/files/public/measures/docs/NASA_SRTM_V3.pdf.
  • Neuenschwander, A., E. Guenther, J.C. White, L. Duncanson, and P. Montesano. 2020. “Validation of ICESat-2 Terrain and Canopy Heights in Boreal Forests.” Remote Sensing of Environment 251: 112110. doi:10.1016/j.rse.2020.112110.
  • Neuenschwander, A.L., and L.A. Magruder. 2016. “The Potential Impact of Vertical Sampling Uncertainty on ICESat-2/ATLAS Terrain and Canopy Height Retrievals for Multiple Ecosystems.” Remote Sensing 8 (12): 1039. doi:10.3390/rs8121039.
  • Neuenschwander, A., and K. Pitts. 2019. “The ATL08 Land and Vegetation Product for the ICESat-2 Mission.” Remote Sensing of Environment 221: 247–259. doi:10.1016/j.rse.2018.11.005.
  • Neuenschwander, A., K. Pitts, B. Jelley, J. Robbins, B. Klotz, S. Popescu, R. Nelson, D. Harding, D. Perderson, and R. Sheridan. 2019. ICESat-2 Algorithm Theoretical Basis Document for Land-Vegetation Along-Track Products (ATL08) Release 002. Vol. 2. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL08_ATBD_r002_v2.pdf
  • Neumann, T.A., A.J. Martino, T. Markus, S. Bae, M.R. Bock, A.C. Brenner, K.M. Brunt, et al. 2019. ”The Ice, Cloud, and Land Elevation Satellite – 2 Mission: A Global Geolocated Photon Product Derived from the Advanced Topographic Laser Altimeter System”. Remote Sensing of Environment 233: 111325. 10.1016/j.rse.2019.111325.
  • Osama, N., B. Yang, Y. Ma, and M. Freeshah. 2021. “A Digital Terrain Modeling Method in Urban Areas by the ICESat-2 (Generating Precise Terrain Surface Profiles from Photon-Counting Technology).” Photogrammetric Engineering & Remote Sensing 87 (4): 237–248. doi:10.14358/pers.87.4.237.
  • Popescu, S.C., T. Zhou, R. Nelson, A. Neuenschwander, R. Sheridan, L. Narine, and K.M. Walsh. 2018. “Photon Counting LiDar: An Adaptive Ground and Canopy Height Retrieval Algorithm for ICESat-2 Data.” Remote Sensing of Environment 208: 154–170. doi:10.1016/j.rse.2018.02.019.
  • Ravibabu, M.V., K. Jain, S.P. Singh, and N.J. Meeniga. 2010. “Accuracy Improvement of ASTER Stereo Satellite Generated DEM Using Texture Filter.” Geo-Spatial Information Science 13 (4): 257–262. doi:10.1007/s11806-010-0376-9.
  • Saini, O., A. Bhardwaj, and R. S. Chatterjee. 2019. “Generation of Radargrammetric Digital Elevation Model (DEM) and Vertical Accuracy Assessment Using Icesat-2 Laser Altimetric Data and Available Open-Source Dems.” In 39th INCA International Congress on New Age Cartography and Geospatial Technology in Digital India, December 18–20, edited by Sh. N. Tomar, 166.Dehradun, India. http://www.incaindia.org/images/uploads/documents/Indian%20Cartographer%20Vol.39%202019.pdf
  • Salas, E.A.L. 2021. “Waveform LiDar Concepts and Applications for Potential Vegetation Phenology Monitoring and Modeling: A Comprehensive Review.” Geo-Spatial Information Science 24 (2): 179–200. doi:10.1080/10095020.2020.1761763.
  • Satgé, F., M.P. Bonnet, F. Timouk, S. Calmant, R. Pillco, J. Molina, W. Lavado-Casimiro, A. Arsen, J.F. Crétaux, and J. Garnier. 2015. “Accuracy Assessment of SRTM V4 and ASTER GDEM V2 Over the Altiplano Watershed Using ICESat/glas Data.” International Journal of Remote Sensing 36 (2): 465–488. doi:10.1080/01431161.2014.999166.
  • Siegfried, M.R., R.L. Hawley, and J.F. Burkhart. 2011. “High-Resolution Ground-Based GPS Measurements Show Intercampaign Bias in ICESat Elevation Data Near Summit, Greenland.” IEEE Transactions on Geoscience and Remote Sensing 49 (9): 3393–3400. doi:10.1109/TGRS.2011.2127483.
  • Slater, J.A., G. Garvey, C. Johnston, J. Haase, B. Heady, G. Kroenung, and J. Little. 2006. “The SRTM Data ‘Finishing’ Process and Products.” Photogrammetric Engineering and Remote Sensing 72 (3): 237–247. doi:10.14358/PERS.72.3.237.
  • Tian, X., and J. Shan. 2021. “Comprehensive Evaluation of the ICESat-2 ATL08 Terrain Product.” IEEE Transactions on Geoscience and Remote Sensing 59 (10): 8195–8209. doi:10.1109/TGRS.2021.3051086.
  • Vernimmen, R., A. Hooijer, and M. Pronk. 2020. “New Icesat-2 Satellite Lidar Data Allow First Global Lowland Dtm Suitable for Accurate Coastal Flood Risk Assessment.” Remote Sensing 12 (17): 1–17. doi:10.3390/rs12172827.
  • Wang, C., X. Zhu, S. Nie, X. Xi, D. Li, W. Zheng, and S. Chen. 2019. “Ground Elevation Accuracy Verification of ICESat-2 Data: A Case Study in Alaska, USA.” Optics Express 27 (26): 38168. doi:10.1364/oe.27.038168.
  • Wu, J., Q. Yang, and Y. Li. 2018. “Partitioning of Terrain Features Based on Roughness.” Remote Sensing 10 (12): 1–21. doi:10.3390/rs10121985.
  • Yu, J., S. Nie, W. Liu, X. Zhu, D. Lu, W. Wu, and Y. Sun. 2021. “Accuracy Assessment of ICESat-2 Ground Elevation and Canopy Height Estimates in Mangroves.” IEEE Geoscience and Remote Sensing Letters 19: 1–5. doi:10.1109/LGRS.2021.3107440.
  • Zhang, J., Q. Hu, Y. Li, H. Li, and J. Li. 2021. “Area, Lake-Level and Volume Variations of Typical Lakes on the Tibetan Plateau and Their Response to Climate Change, 1972–2019.” Geo-Spatial Information Science 24 (3): 458–473. doi:10.1080/10095020.2021.1940318.
  • Zhang, K., D. Gann, M. Ross, Q. Robertson, J. Sarmiento, S. Santana, J. Rhome, and C. Fritz. 2019. “Accuracy Assessment of ASTER, SRTM, ALOS, and TDX Dems for Hispaniola and Implications for Mapping Vulnerability to Coastal Flooding.” Remote Sensing of Environment 225 (February): 290–306. doi:10.1016/j.rse.2019.02.028.
  • Zhang, W., N. Xu, Y. Ma, B. Yang, Z. Zhang, X.H. Wang, and S. Li. 2021. “A Maximum Bathymetric Depth Model to Simulate Satellite Photon-Counting Lidar Performance.” ISPRS Journal of Photogrammetry and Remote Sensing 174: 182–197. doi:10.1016/j.isprsjprs.2021.02.013.
  • Zhu, X., S. Nie, C. Wang, X. Xi, D. Li, G. Li, P. Wang, D. Cao, and X. Yang. 2020. “Estimating Terrain Slope from ICESat-2 Data in Forest Environments.” Remote Sensing 12 (20): 1–19. doi:10.3390/rs12203300.