107
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Central arterial pressure estimation based on two peripheral pressure measurements using one-dimensional blood flow simulation

ORCID Icon, &
Pages 689-699 | Received 02 Feb 2023, Accepted 27 Mar 2023, Published online: 10 Apr 2023

References

  • Alastruey J, Khir AW, Matthys KS, Segers P, Sherwin SJ, Verdonck PR, Parker KH, Peiró J. 2011. Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J Biomech. 44(12):2250–2258.
  • Alastruey J, Parker KH, Peiró J, Byrd SM, Sherwin SJ. 2007. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech. 40(8):1794–1805.
  • Avolio AP. 1980. Multi-branched model of the human arterial system. Med Biol Eng Comput. 18(6):709–718.
  • Banga PV, Varga A, Csobay-Novák C, Kolossváry M, Szántó E, Oderich GS, Entz L, Sótonyi P. 2018. Incomplete circle of Willis is associated with a higher incidence of neurologic events during carotid eversion endarterectomy without shunting. J Vasc Surg. 68(6):1764–1771.
  • Bárdossy G, Halász G. 2011. Modeling blood flow in the arterial system. Per Pol Mech Eng. 55(1):49–55.
  • Bárdossy G, Halász G. 2013. A “backward” calculation method for the estimation of central aortic pressure wave in a 1D arterial model network. Comput Fluids. 73:134–144.
  • Blanco PJ, Watanabe SM, Passos MARF, Lemos PA, Feijóo RA. 2015. An anatomically detailed arterial network model for one-dimensional computational hemodynamics. IEEE Trans Biomed Eng. 62(2):736–753.
  • Bland JM, Altman DG. 1986. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 327(8476):307–310.
  • Cai TY, Qasem A, Ayer JG, Butlin M, O'Meagher S, Melki C, Marks GB, Avolio A, Celermajer DS, Skilton MR. 2017. Central blood pressure in children and adolescents: non-invasive development and testing of novel transfer functions. J Hum Hypertens. 31(12):831–837.
  • Chen CH, Nevo E, Fetics B, Pak PH, Yin FCP, Maughan WL, Kass DA. 1997. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. AHA. 95(7):1827–1836.
  • Cheng HM, Chuang SY, Sung SH, Yu WC, Pearson A, Lakatta EG, Pan WH, Chen CH. 2013. Derivation and validation of diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular risks. J Am Coll Cardiol. 62(19):1780–1787.
  • Cheng HM, Park S, Huang Q, Hoshide S, Wang JG, Kario K, Park CG, Chen CH. 2017. Vascular aging and hypertension: implications for the clinical application of central blood pressure. Int J Cardiol. 230:209–213.
  • Epstein S, Willemet M, Chowienczyk PJ, Alastruey J. 2015. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations. Am J Physiol Heart Circ Physiol. 309(1):H222–H234.
  • Fetics B, Nevo E, Chen CH, Kass DA. 1999. Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry. IEEE Trans Biomed Eng. 46(6):698–706.
  • Formaggia L, Lamponi D, Tuveri M, Veneziani A. 2006. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput Methods Biomech Biomed Engin. 9(5):273–288.
  • Gotzmann M, Hogeweg M, Bauer F, Seibert FS, Rohn BJ, Mügge A, Babel N, Westhoff TH. 2020. The impact of calibration approaches on the accuracy of oscillometric central aortic blood pressure measurement. J Hypertens. 38(11):2154–2160.
  • Gyürki D, Horváth T, Till S, Egri A, Celeng C, Paál G, Merkely B, Maurovich-Horvat P, Halász G. 2022. Central arterial pressure and patient-specific model parameter estimation based on radial pressure measurements. Comput Methods Biomech Biomed Engin. 25:1–10.
  • Herbert A, Cruickshank JK, Laurent S, Boutouyrie P, Shimada K, Kario K, Miyashita H, Eguchi K, Kohara K, Tabara Y. 2014. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 35(44):3122–3133.
  • Hope SA, Meredith IT, Cameron JD. 2008. Arterial transfer functions and the reconstruction of central aortic waveforms: myths, controversies and misconceptions. J Hypertens. 26(1):4–7.
  • Hope SA, Meredith IT, Tay D, Cameron JD. 2007. ‘Generalizability’ of a radial-aortic transfer function for the derivation of central aortic waveform parameters. J Hypertens. 25(9):1812–1820.
  • Huang CM, Wang KL, Cheng HM, Chuang SY, Sung SH, Yu WC, Ting CT, Lakatta EG, Yin FCP, Chou P, et al. 2011. Central versus ambulatory blood pressure in the prediction of all-cause and cardiovascular mortalities. J Hypertens. 29(3):454–459.
  • Huang GP, Yu H, Yang Z, Schwieterman R, Ludwig B. 2018. 1D simulation of blood flow characteristics in the circle of Willis using THINkS. Comput Methods Biomech Biomed Eng. 21(4):389–397.
  • Itu L, Sharma P, Suciu C, Moldoveanu F, Comaniciu D. 2017. Personalized blood flow computations: a hierarchical parameter estimation framework for tuning boundary conditions. Int J Numer Meth Biomed Eng. 33(3):e02803.
  • Karamanoglu M, O'Rourke MF, Avolio AP, Kelly RP. 1993. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J. 14(2):160–167.
  • Lassila T, Manzoni A, Quarteroni A, Rozza G. 2013. A reduced computational and geometrical framework for inverse problems in hemodynamics. Int J Numer Method Biomed Eng. 29(7):741–776.
  • Lombardi D. 2014. Inverse problems in 1D hemodynamics on systemic networks: a sequential approach. Int J Numer Method Biomed Eng. 30(2):160–179.
  • Martin V, Clément F, Decoene A, Gerbeau JF. 2005. Parameter identification for a one-dimensional blood flow model. ESAIM: Proc. 14:174–200.
  • Montisci R, Sanfilippo R, Bura R, Branca C, Piga M, Saba L. 2013. Status of the circle of willis and intolerance to carotid cross-clamping during carotid endarterectomy. Eur J Vasc Endovasc Surg. 45(2):107–112.
  • Mynard JP, Nithiarasu P. 2008. A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun Numer Methods Eng. 24(5):367–417.
  • Nelder JA, Mead R. 1965. A simplex method for function minimization. Comput J. 7(4):308–313.
  • Nichols WW, O’Rourke MF. 2005. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principle. 2nd ed. London (UK): Oxford University Press.
  • Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, Weber T, Blacher J, Daskalopoulou SS, Wassertheurer S, et al. 2016. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens. 34(7):1237–1248.,.
  • Papaioannou TG, Protogerou AD, Stamatelopoulos KS, Vavuranakis M, Stefanadis C. 2009. Non-invasive methods and techniques for central blood pressure estimation: procedures, validation, reproducibility and limitations. Curr Pharm Des. 15(3):245–253.
  • Quarteroni A, Manzoni A, Vergara C. 2017. The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26:365–590.
  • Quick CM, Berger DS, Stewart RH, Laine GA, Hartley CJ, Noordergraaf A. 2006. Resolving the hemodynamic inverse problem. IEEE Trans Biomed Eng. 53(3):361–368.
  • Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N. 2011. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol - Hear Circ Physiol. 301(3):H1173–H1182.
  • Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N. 2009. Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol - Hear Circ Physiol. 297(1):H208–H222.
  • Sausen G, Vieceli T, Rodrigues CG, Kipper D, Stein AT, Grezzana GB. 2018. Central hemodynamic parameters to predict cardiovascular outcomes and mortality among the elderly: protocol for a systematic review. Sao Paulo Med J. 136(6):501–504.
  • Segers P, Carlier S, Pasquet A, Rabben SI, Hellevik LR, Remme E, De Backer T, De Sutter J, Thomas JD, Verdonck P. 2000. Individualizing the orto-radial pressure transfer function: feasibility of a model-based approach. Am J Physiol Heart Circ Physiol. 279(2):H542–H549.
  • Sharman JE, Lim R, Qasem AM, Coombes JS, Burgess MI, Franco J, Garrahy P, Wilkinson IB, Marwick TH. 2006. Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension. 47(6):1203–1208.
  • Spilker RL, Taylor CA. 2010. Tuning multidomain hemodynamic simulations to match physiological measurements. Ann Biomed Eng. 38(8):2635–2648.
  • Szabó V, Halász G. 2017. 1-D blood flow modelling in a running human body. Comput Methods Biomech Biomed Engin. 20(9):941–948.
  • Trudeau L. 2014. Central blood pressure as an index of antihypertensive control: determinants and potential value. Can J Cardiol. 30(5 Suppl):S23–S28.
  • Vlachopoulos C, Aznaouridis K, O'Rourke MF, Safar ME, Baou K, Stefanadis C. 2010. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 31(15):1865–1871.
  • Wang JJ, Parker KH. 2004. Wave propagation in a model of the arterial circulation. J Biomech. 37(4):457–470.
  • Williams B, Lacy PS. 2010. Central haemodynamics and clinical outcomes: going beyond brachial blood pressure? Eur Heart J. 31(15):1819–1822.
  • Williams B, Lacy PS, Yan P, Hwee CN, Liang C, Ting CM. 2011. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an N-point moving average method. J Am Coll Cardiol. 57(8):951–961.
  • Xiao H, Butlin M, Qasem A, Tan I, Li D, Avolio AP. 2018. N-point moving average: a special generalized transfer function method for estimation of central aortic blood pressure. IEEE Trans Biomed Eng. 65(6):1226–1234.
  • Zhang H, Fujiwara N, Kobayashi M, Yamada S, Liang F, Takagi S, Oshima M. 2016. Development of a numerical method for patient-specific cerebral circulation using 1D–0D simulation of the entire cardiovascular system with SPECT data. Ann Biomed Eng. 44(8):2351–2363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.