147
Views
1
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Hemodynamic characteristics and mechanism for intracranial aneurysms initiation with the circle of Willis anomaly

, , , , &
Pages 727-735 | Received 06 Oct 2022, Accepted 30 Mar 2023, Published online: 20 Apr 2023

References

  • Alastruey J, Parker KH, Peiro J, Byrd SM, Sherwin SJ. 2007. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech. 40(8):1794–1805.
  • Bijlenga P, Ebeling C, Jaegersberg M, Summers P, Rogers A, Waterworth A, Iavindrasana J, Macho J, Pereira VM, Bukovics P, et al. 2013. Risk of rupture of small anterior communicating artery aneurysms is similar to posterior circulation aneurysms. Stroke. 44(11):3018–3026.
  • Cebral JR, Mut F, Weir J, Putman C. 2011. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol. 32(1):145–151.
  • Cebral JR, Raschi M. 2013. Suggested connections between risk factors of intracranial aneurysms: a review. Ann Biomed Eng. 41(7):1366–1383.
  • Ferns SP, Schneiders JJ, Siebes M, van den Berg R, van Bavel ET, Majoie CB. 2010. Intracranial blood-flow velocity and pressure measurements using an intra-arterial dual-sensor guidewire. AJNR Am J Neuroradiol. 31(2):324–326.
  • Fukuda S, Hashimoto N, Naritomi H, Nagata I, Nozaki K, Kondo S, Kurino M, Kikuchi H. 2000. Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation. 101(21):2532–2538.
  • Geers AJ, Morales HG, Larrabide I, Butakoff C, Bijlenga P, Frangi AF. 2017. Wall shear stress at the initiation site of cerebral aneurysms. Biomech Model Mechanobiol. 16(1):97–115.
  • Grinberg L, Cheever E, Anor T, Madsen JR, Karniadakis GE. 2011. Modeling blood flow circulation in intracranial arterial networks: a comparative 3d/1d simulation study. Ann Biomed Eng. 39(1):297–309.
  • Grochowski C, Litak J, Kulesza B, Szmygin P, Ziemianek D, Kamieniak P, Szczepanek D, Rola R, Trojanowski T. 2018. Size and location correlations with higher rupture risk of intracranial aneurysms. J Clin Neurosci. 48:181–184.
  • Hashimoto T, Meng H, Young WL. 2006. Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol Res. 28(4):372–380.
  • Hassan T, Timofeev EV, Saito T, Shimizu H, Ezura M, Matsumoto Y, Takayama K, Tominaga T, Takahashi A. 2005. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk of factors for lesion rupture. J Neurosurg. 103(4):662–680.
  • Hoi YM, Meng H, Woodward SH, Bendok BR, Hanel RA, Guterman LR, Hopkins LN. 2004. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg. 101(4):676–681.
  • Hoksbergen AWJ, Fulesdi B, Legemate DA, Csiba L. 2000. Collateral configuration of the circle of willis - transcranial color-coded duplex ultrasonography and comparison with postmortem anatomy. Stroke. 31(6):1346–1351.
  • Khan MO, Arana VT, Najafi M, MacDonald DE, Natarajan T, Valen-Sendstad K, Steinman DA. 2021. On the prevalence of flow instabilities from high-fidelity computational fluid dynamics of intracranial bifurcation aneurysms. J Biomech. 127:110683.
  • Kim JJ, Yang H, Kim YB, Oh JH, Cho KC. 2021. The quantitative comparison between high wall shear stress and high strain in the formation of paraclinoid aneurysms. Sci Rep. 11(1):7947.
  • Koseki H, Miyata H, Shimo S, Ohno N, Mifune K, Shimano K, Yamamoto K, Nozaki K, Kasuya H, Narumiya S, et al. 2020. Two diverse hemodynamic forces, a mechanical stretch and a high wall shear stress, determine intracranial aneurysm formation. Transl Stroke Res. 11(1):80–92.
  • Manini S, Antiga L, Botti L, Remuzzi A. 2015. pyns: an open-source framework for 0d haemodynamic modelling. Ann Biomed Eng. 43(6):1461–1473.
  • Mantha A, Karmonik C, Benndorf G, Strother C, Metcalfe R. 2006. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am J Neuroradiol. 27:1113–1118.
  • Marzo A, Singh P, Reymond P, Stergiopulos N, Patel U, Hose R. 2009. Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms. Comput Methods Biomech Biomed Engin. 12(4):431–444.
  • Meng H, Swartz DD, Wang ZJ, Hoi Y, Kolega J, Metaxa EM, Szymanski MP, Yamamoto J, Sauvageau E, Levy EI. 2006. A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo. Neurosurgery. 59(5):1094–1100.
  • Meng H, Tutino VM, Xiang J, Siddiqui A. 2014. High wss or low wss? complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 35(7):1254–1262.
  • Metaxa E, Tremmel M, Natarajan SK, Xiang J, Paluch RA, Mandelbaum M, Siddiqui AH, Kolega J, Mocco J, Meng H. 2010. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke. 41(8):1774–1782.
  • Meuschke M, Oeltze-Jafra S, Beuing O, Preim B, Lawonn K. 2019. Classification of blood flow patterns in cerebral aneurysms. IEEE Trans Vis Comput Graph. 25(7):2404–2418.
  • Molyneux AJ, Kerr RSC, Yu LM, Clarke M, Sneade M, Yarnold JA, Sandercock P, Grp IC, International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. 2005. International subarachnoid aneurysm trial (isat) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 366(9488):809–817.
  • Piccinelli M, Steinman DA, Hoi YM, Tong F, Veneziani A, Antiga L. 2012. Automatic neck plane detection and 3d geometric characterization of aneurysmal sacs. Ann Biomed Eng. 40(10):2188–2211.
  • Piccinelli M, Veneziani A, Steinman DA, Remuzzi A, Antiga L. 2009. A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans Med Imaging. 28(8):1141–1155.
  • Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N. 2011. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol–Heart Circ Physiol. 301(3):H1173–H1182.
  • Shimogonya Y, Ishikawa T, Imai Y, Matsuki N, Yamaguchi T. 2009. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? a proposed novel hemodynamic index, the gradient oscillatory number (gon). J Biomech. 42(4):550–554.
  • Spiegel M, Redel T, Zhang YJ, Struffert T, Hornegger J, Grossman RG, Doerfler A, Karmonik C. 2011. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput Methods Biomech Biomed Eng. 14(1):9–22.
  • Stojanovic N, Stefanovic I, Randjelovic S, Mitic R, Bosnjakovic P, Stojanov D. 2009. Presence of anatomical variations of the circle of willis in patients undergoing surgical treatment for ruptured intracranial aneurysms. Vojnosanit Pregl. 66(9):711–717.
  • Sugiyama S, Endo H, Omodaka S, Endo T, Niizuma K, Rashad S, Nakayama T, Funamoto K, Ohta M, Tominaga T. 2016. Daughter sac formation related to blood inflow jet in an intracranial aneurysm. World Neurosurg. 96:396–402.
  • Tateshima S, Murayama Y, Villablanca JP, Morino T, Nomura K, Tanishita K, Vinuela F. 2003. In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke. 34(1):187–192.
  • Ujiie H, Sato K, Onda H, Oikawa A, Kagawa M, Takakura K, Kobayashi N. 1993. Clinical analysis of incidentally discovered unruptured aneurysms. Stroke. 24(12):1850–1856.
  • Ujiie H, Tachibana H, Hiramatsu O, Hazel AL, Matsumoto T, Ogasawara Y, Nakajima H, Hori T, Takakura K, Kajiya F. 1999. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery. 45(1):119–129.
  • Valencia A, Morales H, Rivera R, Bravo E, Galvez M. 2008. Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med Eng Phys. 30(3):329–340.
  • Xiang JP, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H. 2011. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke. 42(1):144–152.
  • Zhou G, Wang JN, Liu WD, Gu WQ, Su M, Feng Y, Qin BJ, Zhu YQ. 2020. An assessment of how the anterior cerebral artery anatomy impacts acoa aneurysm formation based on cfd analysis. Br J Neurosurg. DOI: 10.1080/02688697.2020.1821867.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.