1,470
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Overset meshing in combination with novel blended weak-strong fluid-structure interactions for simulations of a translating valve in series with a second valve

, , , , &
Pages 736-750 | Received 01 Jun 2022, Accepted 30 Mar 2023, Published online: 18 Apr 2023

References

  • Abbas SS, Nasif MS, Al-Waked R. 2022. State-of-the-art numerical fluid–structure interaction methods for aortic and mitral heart valves simulations: a review. Simulation (San Diego, Calif). 98(1):3–34.
  • Al-Azawy MG, Turan A, Revell A. 2016. An Overset mesh approach for valve closure: an LVAD application. p. 145–151.
  • Annerel S, Degroote J, Vierendeels J, Claessens T, Ransbeeck P V, Dahl SK, Skallerud Br, Hellevik LR, Segers P, Verdonck P. 2012. Application of a strong FSI coupling scheme for the numerical simulation of bileaflet mechanical heart valve dynamics: study of wall shear stress on the valve leaflets. Progress in Computational Fluid Dynamics. 12(2-3):68–79.
  • Ansys, Inc. 2021. Ansys Fluent: User Guide (Version 2021 R1) [Computer software], Ansys, Inc.
  • Bang JS, Yoo SM, Kim CN. 2006. Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow. ASAIO j. 52(3):234–242.
  • Bavo AM, Rocatello G, Iannaccone F, Degroote J, Vierendeels J, Segers P. 2016. Fluid-structure interaction simulation of prosthetic aortic valves: comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation. PLoS One. 11(4):e0154517.
  • Borazjani I. 2013. Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput Methods Appl Mech Eng. 257:103–116.
  • Borazjani I, Ge L, Sotiropoulos F. 2008. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys. 227(16):7587–7620.
  • Borazjani I, Ge L, Sotiropoulos F. 2010. High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng. 38(2):326–344.
  • Carlsson M, Ugander M, Mosen H, Buhre T, Arheden H. 2007. Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol - Heart Circ Physiol. 292(3):1452–1459.
  • Choi CR, Kim CN. 2009. Numerical analysis on the hemodynamics and leaflet dynamics in a bileaflet mechanical heart valve using a fluid-structure interaction method. Asaio J. 55(5):428–437.
  • Darbyshire AG, Mullin T. 1995. Transition to turbulence in constant-mass-flux pipe flow. J Fluid Mech. 289:83–114.
  • Dasi LP, Simon HA, Sucosky P, Yoganathan AP. 2009. Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol. 36(2):225–237.
  • Dumont K, Stijnen JMA, Vierendeels J, van de Vosse FN, Verdonck PR. 2004. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput Methods Biomech Biomed Engin. 7(3):139–146.
  • Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP. 2003. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng. 125(5):709–718.
  • Gilmanov A, Le TB, Sotiropoulos F. 2015. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. Comput Phys. 300(C):814–843.
  • Gilmanov A, Sotiropoulos F. 2016. Comparative hemodynamics in an aorta with bicuspid and trileaflet valves. Theor Comput Fluid Dyn. 30(1-2):67–85.
  • Han JJ. 2021. Aeson—The Carmat total artificial heart is approved for enrollment in the United States. Artif Organs. 45(5):445–446.
  • Spühler JH, Hoffman J. 2021. An interface‐tracking unified continuum model for fluid‐structure interaction with topology change and full‐friction contact with application to aortic valves. Int J Numer Methods Eng. 122(19):5258–5278.
  • Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS. 2015. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech. 55(6):1211–1225.
  • Kelly NS, McCree D, Fresiello L, Brynedal Ignell N, Cookson AN, Najar A, Perkins IL, Fraser KH. 2022. Video‐based valve motion combined with computational fluid dynamics gives stable and accurate simulations of blood flow in the Realheart total artificial heart. Artif Organs. 46(1):57–70.
  • Kolahdouz EM, Bhalla APS, Scotten LN, Craven BA, Griffith BE. 2021. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction. Comput Phys. 443:110442.
  • Lippi G, Sanchis-Gomar F. 2020. Global epidemiology and future trends of heart failure. AME Med J. 5:15–15.
  • Luraghi G, Wu W, De Castilla H, Rodriguez Matas JF, Dubini G, Dubuis P, Grimmé M, Migliavacca F. 2018. Numerical approach to study the behavior of an artificial ventricle: fluid–structure interaction followed by fluid dynamics with moving boundaries. Artif Organs. 42(10):E315–E324.
  • Melton N, Soleimani B, Dowling R. 2019. Current role of the total artificial heart in the management of advanced heart failure. Curr Cardiol Rep. 21(11):1–7.
  • Min Yun B, Aidun CK, Yoganathan AP. 2014. Blood damage through a bileaflet mechanical heart valve: a quantitative computational study using a multiscale suspension flow solver. J Biomech Eng. 136(10):101009–101009.
  • Mirkhani N, Davoudi MR, Hanafizadeh P, Javidi D, Saffarian N. 2016. On-X heart valve prosthesis: numerical simulation of hemodynamic performance in accelerating systole. Cardiovasc Eng Technol. 7(3):223–237.
  • Mohacsi P, Leprince P. 2014. The CARMAT total artificial heart. Eur J Cardiothorac Surg. 46(6):933–934.
  • Nestola MGC, Becsek B, Zolfaghari H, Zulian P, De Marinis D, Krause R, Obrist D. 2019. An immersed boundary method for fluid-structure interaction based on variational transfer. Comput Phys. 398:108884.
  • NHSBaT. 2021. Organ donation and transplant activity report 2020/21. NHS Blood and Transplant.
  • Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A. 2008. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J Biomech. 41(11):2539–2550.
  • Nowak M, Adamczyk W, Melka B, Ostrowski Z, Bialecki R. 2020. Numerical model of the aortic valve implanted within real human aorta. Cham: Springer International Publishing; p. 265–275.
  • Slepian MJ, Alemu Y, Girdhar G, Soares JS, Smith RG, Einav S, Bluestein D. 2013. The Syncardia™ total artificial heart: in vivo, in vitro, and computational modeling studies. J Biomech. 46(2):266–275.
  • Su B, Kabinejadian F, Phang HQ, Kumar GP, Cui F, Kim S, Tan RS, Hon JKF, Allen JC, Leo HL, et al. 2015. Numerical modeling of intraventricular flow during diastole after implantation of BMHV. PLoS One. 10(5):e0126315.
  • Szabo Z, Holm J, Najar A, Hellers G, Pieper IL, Casimir Ahn H. 2018. Scandinavian real heart (SRH) 11 implantation as total artificial heart (TAH)-experimental update. J Clin Exp Cardiolog. 09(03):1–4.
  • Tian F-B, Dai H, Luo H, Doyle JF, Rousseau B. 2014. Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. Comput Phys. 258:451–469.
  • Torregrossa G, Morshuis M, Varghese R, Hosseinian L, Vida V, Tarzia V, Loforte A, Duveau D, Arabia F, Leprince P, et al. 2014. Results with syncardia total artificial heart beyond 1 year. ASAIO J. 60(6):626–634.