238
Views
2
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Multiscale topology optimization of pelvic bone for combined walking and running gait cycles

& ORCID Icon
Pages 796-812 | Received 08 Feb 2023, Accepted 10 Apr 2023, Published online: 02 May 2023

References

  • Allaire G, Jouve F, Toader A-M. 2004. Structural optimization using sensitivity analysis and a level-set method. Comput Phys. 194(1):363–393.
  • Alsheghri A, Reznikov N, Piché N, McKee MD, Tamimi F, Song J. 2021. Optimization of 3D network topology for bioinspired design of stiff and lightweight bone-like structures. Mater Sci Eng C Mater Biol Appl. 123:112010.
  • Anderson AE, Peters CL, Tuttle BD, Weiss JA. 2005. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng. 127(3):364–373.
  • Andrade-Campos A, Ramos A, Simões JAO. 2012. A model of bone adaptation as a topology optimization process with contact. JBiSE. 05(05):229–244.
  • Bagge M. 2000. A model of bone adaptation as an optimization process. J Biomech. 33(11):1349–1357.
  • Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda G. 2001. Hip contact forces and gait patterns from routine activities. J Biomech. 34(7):859–871.
  • Boyle C, Kim IY. 2011. Three-dimensional micro-level computational study of wolff’s law via trabecular bone remodeling in the human proximal femur using design space topology optimization. J Biomech. 44(5):935–942.
  • Challis VJ. 2010. A discrete level-set topology optimization code written in matlab. Struct Multidisc Optim. 41(3):453–464.
  • Challis VJ, Roberts AP, Grotowski JF, Zhang L-C, Sercombe TB. 2010. Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication. Adv Eng Mater. 12(11):1106–1110.
  • Chen G, Pettet G, Pearcy M, McElwain D. 2007. Modelling external bone adaptation using evolutionary structural optimisation. Biomech Model Mechanobiol. 6(4):275–285.
  • Chen Y, Zhou S, Li Q. 2011. Microstructure design of biodegradable scaffold and its effect on tissue regeneration. Biomaterials. 32(22):5003–5014.
  • Cignoni P, Rocchini C, Scopigno R. 1998. Metro: measuring error on simplified surfaces. In: Computer Graphics Forum. Vol. 17. Wiley Online Library; p. 167–174.
  • Coelho P, Fernandes P, Rodrigues H, Cardoso J, Guedes J. 2009. Numerical modeling of bone tissue adaptation—a hierarchical approach for bone apparent density and trabecular structure. J Biomech. 42(7):830–837.
  • Cowin S, Hegedus D. 1976. Bone remodeling i: theory of adaptive elasticity. J Elasticity. 6(3):313–326.
  • Cowin S, Moss-Salentijn L, Moss M. 1991. Candidates for the mechanosensory system in bone. J Biomech Eng. 113(2):191–197.
  • Cui M, Chen H, Zhou J. 2016. A level-set based multi-material topology optimization method using a reaction diffusion equation. Comput-Aided Des. 73:41–52.
  • Dalstra M, Huiskes R. 1995. Load transfer across the pelvic bone. J Biomech. 28(6):715–724.
  • Dalstra M, Huiskes R, Odgaard A, Van Erning L. 1993. Mechanical and textural properties of pelvic trabecular bone. J Biomech. 26(4–5):523–535.
  • Dalstra M, Huiskes R, van Erning L. 1995. Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng. 117(3):272–278.
  • Deaton JD, Grandhi RV. 2014. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidisc Optim. 49(1):1–38.
  • Desai A, Mogra M, Sridhara S, Kumar K, Sesha G, Ananthasuresh G. 2021. Topological-derivative-based design of stiff fiber-reinforced structures with optimally oriented continuous fibers. Struct Multidisc Optim. 63(2):703–720.
  • Dostal WF, Andrews JG. 1981. A three-dimensional biomechanical model of hip musculature. J Biomech. 14(11):803–812.
  • Eswara Sai Kumar K, Rakshit S. 2020. Topology optimization of the hip bone for walking using multi-load approach. In: ASME International Mechanical Engineering Congress and Exposition, Vol. 84607. American Society of Mechanical Engineers; p. V012T12A013.
  • Fedkiw SOR, Osher S. 2002. Level set methods and dynamic implicit surfaces. Surfaces. 44(77):685.
  • Fernandes P, Folgado J, Jacobs C, Pellegrini V. 2002. A contact model with ingrowth control for bone remodelling around cementless stems. J Biomech. 35(2):167–176.
  • Fernandes P, Rodrigues H, Jacobs C. 1999. A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Eng. 2(2):125–138.
  • Folgado J, Fernandes PR, Guedes JM, Rodrigues HC. 2004. Evaluation of osteoporotic bone quality by a computational model for bone remodeling. Comput Struct. 82(17–19):1381–1388.
  • Fraldi M, Esposito L, Perrella G, Cutolo A, Cowin S. 2010. Topological optimization in hip prosthesis design. Biomech Model Mechanobiol. 9(4):389–402.
  • Fyhrie DP, Carter D. 1986. A unifying principle relating stress to trabecular bone morphology. J Orthop Res. 4(3):304–317.
  • Geraldes DM, Modenese L, Phillips AT. 2016. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur. Biomech Model Mechanobiol. 15(5):1029–1042.
  • Giarmatzis G, Jonkers I, Wesseling M, Van Rossom S, Verschueren S. 2015. Loading of hip measured by hip contact forces at different speeds of walking and running. J Bone Miner Res. 30(8):1431–1440.
  • Goda I, Ganghoffer J-F, Czarnecki S, Czubacki R, Wawruch P. 2019. Topology optimization of bone using cubic material design and evolutionary methods based on internal remodeling. Mech Res Commun. 95:52–60.
  • Gonabadi H, Yadav A, Bull S. 2020. The effect of processing parameters on the mechanical characteristics of pla produced by a 3d fff printer. Int J Adv Manuf Technol. 111(3–4):695–709.
  • Guest JK, Prévost JH. 2006. Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct. 43(22–23):7028–7047.
  • Hamner SR, Seth A, Delp SL. 2010. Muscle contributions to propulsion and support during running. J Biomech. 43(14):2709–2716.
  • Hao Z, Wan C, Gao X, Ji T. 2011. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model. J Biomech Eng. 133(10):101006(1-9).
  • Harrigan TP, Hamilton JJ. 1993. Finite element simulation of adaptive bone remodelling: a stability criterion and a time stepping method. Int J Numer Meth Engng. 36(5):837–854.
  • Hollister SJ. 2005. Porous scaffold design for tissue engineering. Nat Mater. 4(7):518–524.
  • Hollister SJ, Brennan J, Kikuchi N. 1994. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech. 27(4):433–444.
  • Hollister SJ, Kikuchi N, Goldstein SA. 1993. Do bone ingrowth processes produce a globally optimized structure? J Biomech. 26(4–5):391–407.
  • Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD. 2000. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 405(6787):704–706.
  • Huiskes R, Weinans H, Grootenboer H, Dalstra M, Fudala B, Slooff T. 1987. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech. 20(11–12):1135–1150.
  • Huttenlocher DP, Klanderman GA, Rucklidge WJ. 1993. Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Machine Intell. 15(9):850–863.
  • Iqbal T, Wang L, Li D, Dong E, Fan H, Fu J, Hu C. 2019. A general multi-objective topology optimization methodology developed for customized design of pelvic prostheses. Med Eng Phys. 69:8–16.
  • Jang IG, Kim IY. 2008. Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J Biomech. 41(11):2353–2361.
  • Jang IG, Kim IY, Kwak BM. 2009. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization. J Biomech Eng. 131(1):011012(1-7).
  • Johansson MS, Korshøj M, Schnohr P, Marott JL, Prescott EIB, Søgaard K, Holtermann A. 2019. Time spent cycling, walking, running, standing and sedentary: a cross-sectional analysis of accelerometer-data from 1670 adults in the Copenhagen city heart study. BMC Public Health. 19(1):1–13.
  • Kang H, Lin C-Y, Hollister SJ. 2010. Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscipl Optim. 42(4):633–644.
  • Klarbring A, Torstenfelt B. 2010. Dynamical systems and topology optimization. Struct Multidisc Optim. 42(2):179–192.
  • Klarbring A, Torstenfelt B. 2012. Dynamical systems, SIMP, bone remodeling and time dependent loads. Struct Multidisc Optim. 45(3):359–366.
  • Kumar KES, Rakshit S. 2020a. Topology optimization of the hip bone for a few activities of daily living. Int J Adv Eng Sci Appl Math. 12(3–4):193–210.
  • Kumar KES, Rakshit S. 2020b. Topology optimization of the hip bone for gait cycle. Struct Multidisc Optim. 62(4):2035–2049.
  • Kumar KES, Rakshit S. 2022. Optimization based synthesis of pelvic structure for loads in running gait cycle. Sadhana. 47(118):47–118.
  • Lin CY, Kikuchi N, Hollister SJ. 2004. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech. 37(5):623–636.
  • Liu H, Wei P, Wang MY. 2022. Cpu parallel-based adaptive parameterized level set method for large-scale structural topology optimization. Struct Multidisc Optim. 65(1):30.
  • Liu H, Zong H, Shi T, Xia Q. 2020. M-vcut level set method for optimizing cellular structures. Comput Methods Appl Mech Eng. 367:113154.
  • Moussa A, Rahman S, Xu M, Tanzer M, Pasini D. 2020. Topology optimization of 3d-printed structurally porous cage for acetabular reinforcement in total hip arthroplasty. J Mech Behav Biomed Mater. 105:103705.
  • Mullender M, Huiskes R, Weinans H. 1994. A physiological approach to the simulation of bone remodeling as a self-organizational control process. J Biomech. 27(11):1389–1394.
  • Novotny AA, Feijóo RA, Taroco E, Padra C. 2003. Topological sensitivity analysis. Comput Methods Appl Mech Eng. 192(7–8):803–829.
  • Nowak M. 2006. Structural optimization system based on trabecular bone surface adaptation. Struct Multidisc Optim. 32(3):241–249.
  • Park J, Sutradhar A, Shah JJ, Paulino GH. 2018. Design of complex bone internal structure using topology optimization with perimeter control. Comput Biol Med. 94:74–84.
  • Phillips A, Pankaj P, Howie C, Usmani AS, Simpson A. 2007. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions. Med Eng Phys. 29(7):739–748.
  • Rahimizadeh A, Nourmohammadi Z, Arabnejad S, Tanzer M, Pasini D. 2018. Porous architected biomaterial for a tibial-knee implant with minimum bone resorption and bone-implant interface micromotion. J Mech Behav Biomed Mater. 78:465–479.
  • Rossi J-M, Wendling-Mansuy S. 2007. A topology optimization based model of bone adaptation. Comput Methods Biomech Biomed Engin. 10(6):419–427.
  • Ruimerman R, Hilbers P, Van Rietbergen B, Huiskes R. 2005. A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech. 38(4):931–941.
  • Sethian JA. 1999. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Vol. 3. USA: Cambridge University Press.
  • Sturm S, Zhou S, Mai Y-W, Li Q. 2010. On stiffness of scaffolds for bone tissue engineering—a numerical study. J Biomech. 43(9):1738–1744.
  • Sutradhar A, Paulino GH, Miller MJ, Nguyen TH. 2010. Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci USA. 107(30):13222–13227.
  • Takezawa A, Nishiwaki S, Kitamura M. 2010. Shape and topology optimization based on the phase field method and sensitivity analysis. Comput Phys. 229(7):2697–2718.
  • Turbosquid. 2000. Turbosquid. https://www.turbosquid.com.
  • Van Dijk NP, Maute K, Langelaar M, Van Keulen F. 2013. Level-set methods for structural topology optimization: a review. Struct Multidisc Optim. 48(3):437–472.
  • Wang Y, Kang Z. 2019. Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model. Comput Methods Appl Mech Eng. 347:340–364.
  • Wang S, Wang MY. 2006. Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng. 65(12):2060–2090.
  • Wang MY, Wang X, Guo D. 2003. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 192(1–2):227–246.
  • Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM. 2016. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 83:127–141.
  • Wei P, Paulino GH. 2020. A parameterized level set method combined with polygonal finite elements in topology optimization. Struct Multidisc Optim. 61(5):1913–1928.
  • Weinans H, Huiskes R, Grootenboer H. 1992. The behavior of adaptive bone-remodeling simulation models. J Biomech. 25(12):1425–1441.
  • Wieding J, Wolf A, Bader R. 2014. Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J Mech Behav Biomed Mater. 37:56–68.
  • Wolff J. 1892. Das gesetz der transformation der knochen. A Hirshwald. 1:1–152.
  • Wu J, Aage N, Westermann R, Sigmund O. 2018. Infill optimization for additive manufacturing—approaching bone-like porous structures. IEEE Trans Vis Comput Graph. 24(2):1127–1140.
  • Xinghua Z, He G, Dong Z, Bingzhao G. 2002. A study of the effect of non-linearities in the equation of bone remodeling. J Biomech. 35(7):951–960.
  • Yaghmaei M, Ghoddosian A, Khatibi MM. 2020. A filter-based level set topology optimization method using a 62-line MATLAB code. Struct Multidisc Optim. 62(2):1001–1018.
  • Yamada T, Izui K, Nishiwaki S, Takezawa A. 2010. A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng. 199(45–48):2876–2891.
  • Yu C, Wang Q, Xia Z, Wang Y, Mei C, Liu Y. 2022. Multiscale topology optimization for graded cellular structures based on level set surface cutting. Struct Multidisc Optim. 65(1):32.
  • Zhang C, Wu T, Xu S, Liu J. 2023. Multiscale topology optimization for solid-lattice-void hybrid structures through an ordered multi-phase interpolation. Comput-Aided Des. 154:103424.
  • Zillober C. 2001. Global convergence of a nonlinear programming method using convex approximations. Numer Algorithms. 27(3):265–289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.