134
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of titanium uncemented femoral stems for hip prosthesis suitable for the Colombian young adult population

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 825-835 | Received 20 Jan 2023, Accepted 17 Apr 2023, Published online: 05 May 2023

References

  • Abdelaal O, Darwish S, El-Hofy H, Saito Y. 2019. Patient-specific design process and evaluation of a hip prosthesis femoral stem. Int J Artif Organs. 42(6):271–290.
  • Altair Engineering. 2021. Practical Aspects of Structural Optimization with Altair OptiStruct TM.
  • Arabnejad S, Johnston B, Tanzer M, Pasini D. 2017. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res. 35(8):1774–1783.
  • ASM 2012. Handbook, Volume 23: Materials for Medical Devices.
  • ASTM 2020. F 2996-20 Standard Practice for Finite Element Analysis (FEA) of Non-Modular Metallic Orthopaedic Hip Femoral Stems. ASTM International, West Conshohocken, PA, www.astm.org, p. 1–11.
  • ASTM 2021a. E 8/E 8M-21 standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken, PA, www.astm.org. 03.01(C):1–30.
  • ASTM 2021b. E 466-21 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International, West Conshohocken, PA, www.astm.org. 0301:1–7.
  • Budynas R, Nisbett K. 2011. Shigleys mechanical engineering design. New York: McGraw Hill.
  • Huiskes R. 1993. Stress shielding and bone resorption in THA: clinical versus computer-simulation studies. Acta Orthop Belg. 59(Suppl 1):118–129. http://www.ncbi.nlm.nih.gov/pubmed/8116386.
  • ISO 2016. 7206-4:2010 Implants for surgery—Partial and total hip joint prostheses Part 4: determination of endurance properties and performance of stemmed femoral components. Geneva, Switzerland: International Organization for Standardization.
  • Jetté B, Brailovski V, Dumas M, Simoneau C, Terriault P. 2018. Femoral stem incorporating a diamond cubic lattice structure: design, manufacture and testing. J Mech Behav Biomed Mater. 77:58–72. https://linkinghub.elsevier.com/retrieve/pii/S175161611730382X.
  • Jetté B, Brailovski V, Simoneau C, Dumas M, Terriault P. 2018. Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem. J Mech Behav Biomed Mater. 77:539–550.
  • Joshi T, Gupta G. 2021. Effect of dynamic loading on hip implant using finite element method. Mater Today Proc. 46:10211–10216. https://linkinghub.elsevier.com/retrieve/pii/S2214785320389963.
  • Joshi T, Sharma R, Kumar Mittal V, Gupta V. 2021. Comparative investigation and analysis of hip prosthesis for different bio-compatible alloys. Mater Today Proc. 43:105–111. https://linkinghub.elsevier.com/retrieve/pii/S2214785320388301.
  • Joshi T, Sharma R, Mittal V, Gupta V. 2022a. Finite element modeling and comparative analysis of multiple biocompatible titanium alloys for hip prosthesis. In Advances in transdisciplinary engineering. vol. 27. Amsterdam, Netherlands: IOS Press BV. p. 181–186.
  • Joshi T, Sharma R, Mittal VK, Gupta V. 2022b. Biomechanical analysis of multi-material hip implant assembly. ECS Trans. 107(1):899–913.
  • Joshi T, Sharma R, Mittal VK, Gupta V, Krishan G. 2022a. Dynamic fatigue behavior of hip joint under patient specific loadings. Int J Automot Mech Eng. 19(3):10014–10027.
  • Joshi T, Sharma R, Mittal VK, Gupta V, Krishan G. 2022b. Dynamic analysis of hip prosthesis using different biocompatible alloys. ASME Open J Eng. 1:1–10.
  • K N C, Zuber M, Bhat N S, Shenoy B S. 2020. Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis. Cogent Eng. 7(1):1719575.
  • Kladovasilakis N, Tsongas K, Tzetzis D. 2020. Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures. Biomimetics. 5(3):44. https://www.mdpi.com/2313-7673/5/3/44.
  • López Galiano IC, Juha M, Ortiz JG, Echeverry-Mejia J. 2022. Selection methodology of femoral stems according to the cross section and the maximum stresses. J Biomech Eng. 144(5):1–7. https://asmedigitalcollection.asme.org/biomechanical/article/144/5/054502/1127986/Selection-Methodology-of-Femoral-Stems-According.
  • López I, Echeverry-Mejía J, Ortiz JG, Juha M. 2022. Selection methodology of femoral stems under fatigue loading conditions. Comput Methods Biomech Biomed Eng. 1–10.
  • Ministerio de Salud y Protección Social. 2022. Registro Individual de Prestaciones de Servicios de Salud, Database CUBO, [cited 2022-05-12].
  • Ministerio de Salud y Protección Social. 2022. Registro Individual de Prestaciones de Servicios de Salud. [accessed 2022b Aug 4]. Registro Individual de Prestaciones de Servicios de Salud.
  • Nakano T. 2019. Physical and mechanical properties of metallic biomaterials. In Metals for biomedical devices. 2nd ed. Sawston, UK: Elsevier. p. 97–129.
  • Niinomi M. 2007. Recent research and development in metallic materials for biomedical, dental and healthcare products applications. MSF. 539–543(PART 1):193–200.
  • Pruitt LA, Chakravartula AM. 2011. Mechanics of biomaterials fundamental principles for implant design. Cambridge: Cambridge University Press. http://ebooks.cambridge.org/ref/id/CBO9780511977923.
  • Ravikant, Mittal VK, Gupta, V. 2023. Homogeneous and heterogeneous modeling of patient-specific hip implant under static and dynamic loading condition using finite element analysis. J Inst Eng India Ser D. https://doi.org/10.1007/s40033-023-00447-0
  • Ridzwan MIZ, Shuib S, Hassan AY, Shokri AA, Mohamad Ib MN. 2007. Problem of stress shielding and improvement to the hip implant designs: a review. J Med Sci. 7(3):460–467.
  • Sabatini AL, Goswami T. 2008. Hip implants VII: finite element analysis and optimization of cross-sections. Mater Des. 29(7):1438–1446. https://linkinghub.elsevier.com/retrieve/pii/S0261306907002099.
  • Simoneau C, Terriault P, Jetté B, Dumas M, Brailovski V. 2017. Development of a porous metallic femoral stem: design, manufacturing, simulation and mechanical testing. Mater Des. 114:546–556. https://linkinghub.elsevier.com/retrieve/pii/S0264127516313636.
  • Sun C, Wang L, Kang J, Li D, Jin Z. 2018. Biomechanical optimization of elastic modulus distribution in porous femoral stem for artificial hip joints. J Bionic Eng. 15(4):693–702.
  • Wang Y, Arabnejad S, Tanzer M, Pasini D. 2018. Hip implant design with three-dimensional porous architecture of optimized graded density. J Mech Design. 140(11):111406. http://mechanicaldesign.asmedigitalcollection.asme.org.
  • Wertli MM, Schlapbach JM, Haynes AG, Scheuter C, Jegerlehner SN, Panczak R, Chiolero A, Rodondi N, Aujesky D. 2020. Regional variation in hip and knee arthroplasty rates in Switzerland: a population-based small area analysis. Shah TI, editor. PLoS One. 15(9):e0238287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.