1,318
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel method to accurately recreate in vivo loads and kinematics in computational models of the knee

, , , &
Pages 860-866 | Received 27 Oct 2022, Accepted 19 Apr 2023, Published online: 01 May 2023

References

  • Acker S, Li R, Murray H, John PS, Banks S, Mu S, Wyss U, Deluzio K. 2011. Accuracy of single-plane fluoroscopy in determining relative position and orientation of total knee replacement components. J Biomech. 44(4):784–787.
  • ASTM International. 2017. ASTM F3141-17a. Standard Guide for Total Knee Replacement Loading Profiles. West Conshohocken: ASTM International, [accessed 2021 May 10].
  • Banks SA, Hodge WA. 1996. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 43(6):638–649.
  • Carr BC, Goswami T. 2009. Knee implants: review of models and biomechanics. Mater Design. 30(2):398–413.
  • Catani F, Innocenti B, Belvedere C, Labey L, Ensini A, Leardini A. 2010. The Mark Coventry award: articular contact estimation in TKA using in vivo kinematics and finite element analysis. Clin Orthop Relat Res. 468(1):19–28.
  • D’Lima DD, Patil S, Steklov N, Colwell CW. 2011. The 2011 ABJS Nicolas Andry Award: ‘Lab’-in-a-knee: in vivo knee forces, kinematics, and contact analysis. Clin Orthop Relat Res. 469(10):2953–2970.
  • Dreyer MJ, Trepczynski A, Hosseini Nasab SH, Kutzner I, Schütz P, Weisse B, Dymke J, Postolka B, Moewis P, Bergmann G, et al. 2022. European society of biomechanics S.M. Perren Award 2022: standardized tibio-femoral implant loads and kinematics. J Biomech. 141:111171.
  • Fitzpatrick CK, Rullkoetter PJ. 2014. Estimating total knee replacement joint load ratios from kinematics. J Biomech. 47(12):3003–3011.
  • Fregly BJ, Banks SA, D'Lima DD, Colwell CW. 2008. Sensitivity of knee replacement contact calculations to kinematic measurement errors. J Orthop Res. 26(9):1173–1179.
  • Fregly BJ, Besier TF, Lloyd DG, Delp SL, Banks SA, Pandy MG, D'Lima DD. 2012. Grand challenge competition to predict in vivo knee loads: grand challenge competition. J Orthop Res. 30(4):503–513.
  • Fregly BJ, Rahman HA, Banks SA. 2005a. Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. J Biomech Eng. 127(4):692–699.
  • Fregly BJ, Sawyer WG, Harman MK, Banks SA. 2005b. Computational wear prediction of a total knee replacement from in vivo kinematics. J Biomech. 38(2):305–314.
  • Frigo CA, Donno L. 2021. The effects of external loads and muscle forces on the knee joint ligaments during walking: A Musculoskeletal Model Study. Applied Sciences. 11(5):2356.
  • Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ. 2002. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech. 35(2):267–275.
  • Gray HA, Guan S, Thomeer LT, Schache AG, de Steiger R, Pandy MG. 2019. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane x-ray imaging. J Orthop Res. 37(3):615–630.
  • Heinlein B, Graichen F, Bender A, Rohlmann A, Bergmann G. 2007. Design, calibration and pre-clinical testing of an instrumented tibial tray. J Biomech. 40: s 4–S10.
  • Hoff WA, Komistek RD, Dennis DA, Gabriel SM, Walker SA. 1998. Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech (Bristol, Avon). 13(7):455–472.
  • Hosseini Nasab SH, Smith CR, Postolka B, Schütz P, List R, Taylor WR. 2021. In vivo elongation patterns of the collateral ligaments in healthy knees during functional activities. J Bone Joint Surg Am. 103(17):1620–1627.
  • Imani Nejad Z, Khalili K, Hosseini Nasab SH, Schütz P, Damm P, Trepczynski A, Taylor WR, Smith CR. 2020. The capacity of generic musculoskeletal simulations to predict knee joint loading using the CAMS-knee datasets. Ann Biomed Eng. 48(4):1430–1440.
  • International Organization for Standardization. 2009. ISO 14243-1:2009. Implants for surgery—Wear of total knee-joint prostheses—Part 1: loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test. Geneva: ISO. https://www.iso.org/standard/44262.html.
  • International Organization for Standardization. 2014. ISO 14243-3:2014. Implants for surgery—Wear of total knee-joint prostheses—Part 3: loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test. Geneva: ISO. https://www.iso.org/standard/56649.html.
  • Kia M, Stylianou AP, Guess TM. 2014. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials. Med Eng Phys. 36(3):335–344.
  • Kirking B, Krevolin J, Townsend C, Colwell CW, D’Lima DD. 2006. A multiaxial force-sensing implantable tibial prosthesis. J Biomech. 39(9):1744–1751.
  • Lin Y-C, Haftka RT, Queipo NV, Fregly BJ. 2010. Surrogate articular contact models for computationally efficient multibody dynamic simulations. Med Eng Phys. 32(6):584–594.
  • Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. 2003. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging. 22(12):1561–1574.
  • Navacchia A, Rullkoetter PJ, Schütz P, List RB, Fitzpatrick CK, Shelburne KB. 2016. Subject-specific modeling of muscle force and knee contact in total knee arthroplasty. J Orthop Res. 34(9):1576–1587.
  • Persson BNJ, Albohr O, Tartaglino U, Volokitin AI, Tosatti E. 2005. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys condens Matter. 17(1):R1–R62.
  • Pfitzner T, Moewis P, Stein P, Boeth H, Trepczynski A, von Roth P, Duda GN. 2018. Modifications of femoral component design in multi-radius total knee arthroplasty lead to higher lateral posterior femoro-tibial translation. Knee Surg Sports Traumatol Arthrosc. 26(6):1645–1655.
  • Postolka B, Schütz P, Fucentese SF, Freeman MAR, Pinskerova V, List R, Taylor WR. 2020. Tibio-femoral kinematics of the healthy knee joint throughout complete cycles of gait activities. J Biomech. 110:109915.
  • Prins AH, Kaptein BL, Stoel BC, Nelissen RGHH, Reiber JHC, Valstar ER. 2011. Integrated contour detection and pose estimation for fluoroscopic analysis of knee implants. Proc Inst Mech Eng H. 225(8):753–761.
  • Reinders J, Sonntag R, Vot L, Gibney C, Nowack M, Kretzer JP. 2015. Wear testing of moderate activities of daily living using in vivo measured knee joint loading. Zadpoor AA, editor. PLoS One. 10(3):e0123155.
  • Schütz P, Postolka B, Gerber H, Ferguson SJ, Taylor WR, List R. 2019. Knee implant kinematics are task-dependent. J R Soc Interface. 16(151):20180678.
  • Shu L, Hashimoto S, Sugita N. 2021. Enhanced in-silico polyethylene wear simulation of total knee replacements during daily activities. Ann Biomed Eng. 49(1):322–333.
  • Smith CR, Vignos MF, Lenhart RL, Kaiser J, Thelen DG. 2016. The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement. J Biomech Eng. 138(2):021017.
  • Taylor WR, Schütz P, Bergmann G, List R, Postolka B, Hitz M, Dymke J, Damm P, Duda G, Gerber H, et al. 2017. A comprehensive assessment of the musculoskeletal system: the CAMS-Knee data set. J Biomech. 65:32–39.
  • Teeter MG, Parikh A, Taylor M, Sprague J, Naudie DD. 2015. Wear and creep behavior of total knee implants undergoing wear testing. J Arthroplasty. 30(1):130–134.
  • Varadarajan KM, Moynihan AL, D'Lima D, Colwell CW, Li G. 2008. In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities. J Biomech. 41(10):2159–2168.
  • Winter DA. 2009. Biomechanics and motor control of human movement. 4th ed. Hoboken, N.J: Wiley.