99
Views
0
CrossRef citations to date
0
Altmetric
Ecology

Interspecific, ontogenetic and temporal variations in stable isotopes of small tuna species in the northeast Atlantic Ocean

ORCID Icon, ORCID Icon & ORCID Icon
Pages 13-31 | Received 02 Mar 2023, Accepted 16 Oct 2023, Published online: 21 Dec 2023

References

  • Pons M, Kell L, Rudd MB, et al. Performance of length-based data-limited methods in a multifleet context: application to small tunas, mackerels, and bonitos in the Atlantic Ocean. ICES J Mar Sci. 2019;76:960–973. doi:10.1093/icesjms/fsz004
  • Collette BB, Nauen CE. FAO species catalogue. Vol. 2. Scombrids of the world: an annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. Rome: Food and Agriculture Organization; 1983. (FAO Fisheries Synopsis; No 125).
  • Majkowski J. Global fishery resources of tuna and tuna-like species. Rome: Food and Agriculture Organization; 2007. (FAO Fisheries Technical Paper; 483).
  • Lucena-Frédou F, Mourato B, Frédou T, et al. Review of the life history, fisheries, and stock assessment for small tunas in the Atlantic Ocean. Rev Fish Biol Fish. 2021;31:709–736. doi:10.1007/s11160-021-09666-8
  • Dambacher JM, Young JW, Olson RJ, et al. Analyzing pelagic food webs leading to top predators in the Pacific Ocean: a graph-theoretic approach. Prog Oceanogr. 2010;86:152–165. doi:10.1016/j.pocean.2010.04.011
  • Stergiou KI, Karpouzi VS. Feeding habits and trophic levels of Mediterranean fish. Rev Fish Biol Fish. 2002;11:217–254. doi:10.1023/A:1020556722822
  • Báez JC, Muñoz-Exposito P, MJ G-V, et al. The NAO affects the reproductive potential of small tuna migrating from the Mediterranean Sea. Fish Res. 2019;216:41–46. doi:10.1016/j.fishres.2019.03.023
  • Navarro J, Sáez-Liante R, Albo-Puigserver M, et al. Feeding strategies and ecological roles of three predatory pelagic fish in the western Mediterranean Sea. Deep-Sea Res Part II-Top Stud Oceanogr. 2017;140:9–17. doi:10.1016/j.dsr2.2016.06.009
  • Genç Y, Başçınar NS, Dağtekin M. Feeding habits during migration of the Atlantic bonito Sarda sarda (Bloch, 1793) to the Black Sea. Mar Biol Res. 2019;15:125–136. doi:10.1080/17451000.2019.1596287
  • Campo D, Mostarda E, Castriota L, et al. Feeding habits of the Atlantic bonito, Sarda sarda (Bloch, 1793) in the southern Tyrrhenian sea. Fish Res. 2006;81:169–175. doi:10.1016/j.fishres.2006.07.006
  • Mostarda E, Campo D, Castriota L, et al. Feeding habits of the bullet tuna Auxis rochei in the southern Tyrrhenian Sea. J Mar Biol Assoc UK. 2007;87:1007–1012. doi:10.1017/S0025315407055440
  • Mannoch CS, Mason DL, Selson RS. Foods of little tunny Euthynnus alletteratus collected along the southeastern and Gulf coasts of the United States. Bull Japan Soc Sci Fish. 1985;51(8):1207–1218. doi:10.2331/suisan.51.1207
  • Dawson TE, Brooks PD, et al. Fundamentals of stable isotope chemistry and measurement. In: Unkovich M, Pate J, McNeill A, editors. Stable isotope techniques in the study of biological processes and functioning of ecosystems. Dordrecht: Springer; 2001. p. 1–18. (Current Plant Science and Biotechnology in Agriculture; 40).
  • Bond AL, Hobson KA. Reporting stable-isotope ratios in ecology: recommended terminology, guidelines and best practices. Waterbirds. 2012;35:324–331. doi:10.1675/063.035.0213
  • Michener R, Lajtha K. Stable isotopes in ecology and environmental science. Malden (MA): Blackwell; 2007.
  • Tsai C, Chiang W, Sun C, et al. Trophic size-structure of sailfish Istiophorus platypterus in eastern Taiwan estimated by stable isotope analysis. J Fish Biol. 2014;84:354–371. doi:10.1111/jfb.12290
  • Chang Y-C, Chiang W-C, Madigan DJ, et al. Trophic dynamics and feeding ecology of skipjack tuna (Katsuwonus pelamis) off eastern and western Taiwan. Molecules. 2022;27:1073. doi:10.3390/molecules27031073
  • Albo-Puigserver M, Navarro J, Coll M, et al. Feeding ecology and trophic position of three sympatric demersal chondrichthyans in the northwestern Mediterranean. Mar Ecol Prog Ser. 2015;524:255–268. doi:10.3354/meps11188
  • Prieto-Amador M, Medina A, Varela JL. Trophic niche segregation between the sympatric tunas Thunnus alalunga and Katsuwonus pelamis in the Gulf of Cadiz (East Atlantic). Mar Biodivers. 2022;52:18. doi:10.1007/s12526-021-01256-y
  • Cardona L, Martínez-Iñigo L, Mateo R, et al. The role of sardine as prey for pelagic predators in the western Mediterranean Sea assessed using stable isotopes and fatty acids. Mar Ecol Prog Ser. 2015;531:1–14. doi:10.3354/meps11353
  • Navarro J, Albo-Puigserver M, Serra PE, et al. Trophic strategies of three predatory pelagic fish coexisting in the north-western Mediterranean Sea over different time spans. Estuar Coast Shelf Sci. 2020;246:107040. doi:10.1016/j.ecss.2020.107040
  • Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 2002;83:703–718. doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  • Popp BN, Graham BS, Olson RJ, et al. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. In: Dawson TE, Siegwolf RTW, editors. Stable isotopes as indicators of ecological change. Amsterdam: Elsevier; 2007. p. 173–190. (Terrestrial Ecology; 1).
  • Madigan DJ, Litvin SY, Popp BN, et al. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin tuna (Thunnus orientalis). PLoS One. 2012;7:e49220. doi:10.1371/journal.pone.0049220
  • Fantle MS, Dittel AI, Schwalm SM, et al. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia. 1999;120:416–426. doi:10.1007/s004420050874
  • Fry B. Stable isotope ecology. Berlin: Springer; 2006.
  • DeNiro MJ, Epstein S. Isotopic composition of cellulose from aquatic organisms. Geochim Cosmochim Acta. 1981;45:1885–1894. doi:10.1016/0016-7037(81)90018-1
  • Logan JM, Pethybridge H, Lorrain A, et al. Global patterns and inferences of tuna movements and trophodynamics from stable isotope analysis. Deep-Sea Res Part II-Top Stud Oceanogr. 2020;175:104775. doi:10.1016/j.dsr2.2020.104775
  • Jackson AL, Inger R, Parnell AC, et al. Comparing isotopic niche widths among and within communities: SIBER - stable isotope Bayesian ellipses in R. J Anim Ecol. 2011;80:595–602. doi:10.1111/j.1365-2656.2011.01806.x
  • Boersma M, Elser JJ. Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology. 2006;87:1325–1330. doi:10.1890/0012-9658(2006)87[1325:TMOAGT]2.0.CO;2
  • González-Ortegón E, Vay L, Walton MEM, et al. Maternal trophic status and offpsring phenotype in a marine invertebrate. Sci Rep. 2018;8:9618. doi:10.1038/s41598-018-27709-2
  • Logan JM, Jardine TD, Miller TJ, et al. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol. 2008: 77: 838–846. doi:10.1111/j.1365-2656.2008.01394.x
  • Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
  • Shiffman DS, Kaufman L, Heithaus M, et al. Intraspecific differences in relative isotopic niche area and overlap of co-occurring sharks. Aquat Ecol. 2019;53:233–250. doi:10.1007/s10452-019-09685-5
  • Quezada-Romegialli C, Jackson AL, Hayden B, et al. tRophicPosition, an R package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol Evol. 2018;9:1592–1599. doi:10.1111/2041-210X.13009
  • R Core Team. R: a language and environment for statistical computing. Version 4.2.2 [Internet]. Vienna: R Foundation for Statistical Computing; 2022; [Internet] Available from: http://www.r-project.org.
  • Varela JL, Larrañaga A, Medina A. Prey-muscle carbon and nitrogen stable-isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus). J Exp Mar Biol Ecol. 2011;406:21–28. doi:10.1016/j.jembe.2011.06.010
  • Canseco JA, Niklitschek EJ, Harrod C. Variability in δ13C and δ15N trophic discrimination factors for teleost fishes: a meta-analysis of temperature and dietary effects. Rev Fish Biol Fish. 2022;32:313–329. doi:10.1007/s11160-021-09689-1
  • McCutchan JH Jr, Lewis WM Jr, Kendall C, et al. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos. 2003;102:378–390. doi:10.1034/j.1600-0706.2003.12098.x
  • Bode A, Alvarez-Ossorio MT, Cunha ME, et al. Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula. Prog Oceanogr. 2007;74:115–131. doi:10.1016/j.pocean.2007.04.005
  • Bougeard S, Dray S. Supervised multiblock analysis in R with the ade4 package. J Stat Softw. 2018;86:1–17. doi:10.18637/jss.v086.i01
  • Wickham H, François R, Henry L, et al. dplyr: a grammar of data manipulation. [Internet]. R package version 1.0.2; 2020. Available from: https://cran.r-project.org/package=dplyr.
  • Wickham H. ggplot2: elegant graphics for data analysis. New York, NY: Springer; 2009.
  • Venables WN, Ripley BD. Modern applied statistics with S-PLUS. New York, NY: Springer; 2013.
  • Fay MP, Shaw PA. Exact and asymptotic weighted logrank tests for interval censored data: the interval R package. J Stat Softw. 2010;36(2):i02.
  • Oksanen J, Blanchet FG, Friendly M, et al. vegan: community ecology package. R package version 2.4-2; 2017.
  • Das K, Lepoint G, Loizeau V, et al. Tuna and dolphin associations in the North-East Atlantic: evidence of different ecological niches from stable isotope and heavy metal measurements. Mar Pollut Bull. 2000;40:102–109. doi:10.1016/S0025-326X(99)00178-2
  • Richert JE, Galván-Magaña F, Klimley AP. Interpreting nitrogen stable isotopes in the study of migratory fishes in marine ecosystems. Mar Biol. 2015;162:1099–1110. doi:10.1007/s00227-015-2652-6
  • Arkema KK, Abramson SC, Dewsbury BM. Marine ecosystem-based management: from characterization to implementation. Front Ecol Environ. 2006;4:525–532. doi:10.1890/1540-9295(2006)4[525:MEMFCT]2.0.CO;2
  • Curtin R, Prellezo R. Understanding marine ecosystem based management: a literature review. Mar Policy. 2010;34:821–830. doi:10.1016/j.marpol.2010.01.003
  • Lorrain A, Graham BS, Popp BN, et al. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep-Sea Res Part II-Top Stud Oceanogr. 2015;113:188–198. doi:10.1016/j.dsr2.2014.02.003
  • Tawa A, Ishihara T, Uematsu Y, et al. Evidence of westward transoceanic migration of Pacific bluefin tuna in the Sea of Japan based on stable isotope analysis. Mar Biol. 2017;164:1–7. doi:10.1007/s00227-017-3127-8
  • Varela JL, Rojo-Nieto E, Sorell JM, et al. Using stable isotope analysis to assess trophic relationships between Atlantic bluefin tuna (Thunnus thynnus) and striped dolphin (Stenella coeruleoalba) in the Strait of Gibraltar. Mar Environ Res. 2018;139:57–63. doi:10.1016/j.marenvres.2018.04.016
  • Morote E, Olivar MP, Pankhurst PM, et al. Trophic ecology of bullet tuna Auxis rochei larvae and ontogeny of feeding-related organs. Mar Ecol Prog Ser. 2008;353:243–254. doi:10.3354/meps07206
  • Laiz-Carrión R, Quintanilla JM, Torres AP, et al. Hydrographic patterns conditioning variable trophic pathways and early life dynamics of bullet tuna Auxis rochei larvae in the Balearic Sea. Mar Ecol Prog Ser. 2013;475:203–212. doi:10.3354/meps10108
  • García A, Laiz-Carrión R, Uriarte A, et al. Differentiated stable isotopes signatures between pre-and post-flexion larvae of Atlantic bluefin tuna (Thunnus thynnus) and of its associated tuna species of the Balearic Sea (NW Mediterranean). Deep-Sea Res Part II-Top Stud Oceanogr. 2017;140:18–24. doi:10.1016/j.dsr2.2017.02.006
  • Varela JL, Sorell JM, Laiz-Carrión R, et al. Stomach content and stable isotope analyses reveal resource partitioning between juvenile bluefin tuna and Atlantic bonito in Alboran (SW Mediterranean). Fish Res. 2019;215:97–105. doi:10.1016/j.fishres.2019.03.017
  • Pauly D, Palomares M-L. Fishing down marine food web: it is far more pervasive than we thought. Bull Mar Sci. 2005;76:197–212.
  • Pauly D, Christensen V. Primary production required to sustain global fisheries. Nature. 1995;374:255–257. doi:10.1038/374255a0
  • Loor-Andrade P, Pincay-Espinoza J, Carrera-Fernández M, et al. Feeding habits of billfishes (Carangaria: Istiophoriformes) in the Ecuadorian Pacific Ocean. Neotrop Ichthyol. 2017;15:e160162. doi:10.1590/1982-0224-20160162
  • Yoon SC, Yoo JT, Lee S II, et al. Feeding habits of the Pacific bluefin tuna, Thunnus orientalis in the southern sea of Korea. J Korean Soc Fish Ocean Technol. 2015;51:553–560. doi:10.3796/KSFT.2015.51.4.553
  • Rudershausen PJ, Buckel JA, Edwards J, et al. Feeding ecology of blue marlins, dolphinfish, yellowfin tuna, and wahoos from the North Atlantic Ocean and comparisons with other oceans. Trans Am Fish Soc. 2010;139:1335–1359. doi:10.1577/T09-105.1
  • Aurioles-Gamboa D, Rodríguez-Pérez MY, Sánchez-Velasco L, et al. Habitat, trophic level, and residence of marine mammals in the Gulf of California assessed by stable isotope analysis. Mar Ecol Prog Ser. 2013;488:275–290. doi:10.3354/meps10369
  • Lesage V, Hammill MO, Kovacs KM. Marine mammals and the community structure of the Estuary and Gulf of St Lawrence, Canada: evidence from stable isotope analysis. Mar Ecol Prog Ser. 2001;210:203–221. doi:10.3354/meps210203
  • Barnes C, Jennings S, Polunin NVC, et al. The importance of quantifying inherent variability when interpreting stable isotope field data. Oecologia. 2008;155:227–235. doi:10.1007/s00442-007-0904-y
  • Stephens RB, Shipley ON, Moll RJ. Meta-analysis and critical review of trophic discrimination factors (Δ13C and Δ15N): importance of tissue, trophic level and diet source. Funct Ecol. 2023;37:2535–2548. doi:10.1111/1365-2435.14403
  • Madigan DJ, Baumann Z, Carlisle AB, et al. Isotopic insights into migration patterns of Pacific bluefin tuna in the eastern Pacific Ocean. Can J Fish Aquat Sci. 2018;75:260–270. doi:10.1139/cjfas-2016-0504
  • de Luca G, Mariani P, MacKenzie BR, et al. Fishing out collective memory of migratory schools. J R Soc Interface. 2014;11:20140043. doi:10.1098/rsif.2014.0043
  • Logan JM, Wozniak AS, Varela JL, et al. Pre-spawning habitat use of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable isotope analysis. Mar Biol. 2023;170:67. doi:10.1007/s00227-023-04210-7
  • McMahon KW, Hamady LL, Thorrold SR. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol Oceanogr. 2013;58:697–714. doi:10.4319/lo.2013.58.2.0697
  • Coletto JL, Botta S, Fischer LG, et al. Isotope-based inferences of skipjack tuna feeding ecology and movement in the southwestern Atlantic Ocean. Mar Environ Res. 2021;165:105246. doi:10.1016/j.marenvres.2020.105246
  • Rey JC, Cort JL. Migracion de bonitos (Sarda sarda) y bacoreta (Euthynnus alletteratus) entre el Mediterraneo y el Atlantico. Coll Vol Sci Pap ICCAT. 1981;15(2):346–347. Spanish.
  • Graham BS, Grubbs D, Holland K, et al. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol. 2007;150:647–658. doi:10.1007/s00227-006-0360-y
  • Sarà G, Sarà R. Feeding habits and trophic levels of bluefin tuna Thunnus thynnus of different size classes in the Mediterranean Sea. J Appl Ichthyol. 2007;23:122–127. doi:10.1111/j.1439-0426.2006.00829.x
  • Varela JL, Intriago KM, Flores JC, et al. Feeding habits of juvenile yellowfin tuna (Thunnus albacares) in Ecuadorian waters assessed from stomach content and stable isotope analysis. Fish Res. 2017;194:89–98. doi:10.1016/j.fishres.2017.05.017
  • Scharf FS, Juanes F, Rountree RA. Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser. 2000;208:229–248. doi:10.3354/meps208229
  • Ohshimo S, Madigan DJ, Kodama T, et al. Isoscapes reveal patterns of δ13C and δ15N of pelagic forage fish and squid in the Northwest Pacific Ocean. Prog Oceanogr. 2019;175:124–138. doi:10.1016/j.pocean.2019.04.003
  • Reglero P, Ciannelli L, Alvarez-Berastegui D, et al. Geographically and environmentally driven spawning distributions of tuna species in the western Mediterranean Sea. Mar Ecol Prog Ser. 2012;463:273–284. doi:10.3354/meps09800
  • da Silva JM, Alves LMF, Laranjeiro MI, et al. Mercury levels in commercial mid-trophic level fishes along the Portuguese coast – relationships with trophic niche and oxidative damage. Ecol Indic. 2020;116:106500. doi:10.1016/j.ecolind.2020.106500
  • Olaso I, Gutiérrez JL, Villamor B, et al. Seasonal changes in the north-eastern Atlantic mackerel diet (Scomber scombrus) in the north of Spain (ICES Division VIIIc). J Mar Biol Assoc UK. 2005;85:415–418. doi:10.1017/S0025315405011343h
  • Orsi Relini L, Palandri G, Garibaldi F, et al. Towards a new taxonomical approach to Mediterranean small tuna of genus Auxis. Biol Mar Mediterr. 2008;15:207–210.
  • Ollé J, Macías D, Saber S, et al. Genetic analysis reveals the presence of frigate tuna (Auxis thazard) in the bullet tuna (Auxis rochei) fishery of the Iberian Peninsula and the western-central Mediterranean Sea. Bull Mar Sci. 2019;95:317–325. doi:10.5343/bms.2018.0049
  • Lima FP, Wethey DS. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat Commun. 2012;3:704. doi:10.1038/ncomms1713
  • Pisano A, Marullo S, Artale V, et al. New evidence of mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 2020;12:132. doi:10.3390/rs12010132
  • Hodson DLR, Sutton RT, Cassou C, et al. Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: a multimodel comparison. Clim Dyn. 2010;34:1041–1058. doi:10.1007/s00382-009-0571-2
  • Bañón R, Farias C, de Carlos A, et al. New record and revised list of Megalops atlanticus (Elopiformes: Megalopidae) from Atlantic European waters. Cybium. 2019;43:203–207.
  • Bañón R, del Rio JL, Piñeiro C, et al. Occurrence of tropical affinity fish in Galician waters, north-west Spain. J Mar Biol Assoc UK. 2002;82:877–880. doi:10.1017/S0025315402006288
  • Quero J. Changes in the Euro-Atlantic fish species composition resulting from fishing and ocean warming. Ital J Zool. 1998;65:493–499. doi:10.1080/11250009809386873
  • Corsini-Foka M, Kalogirou S. On the finding of the Indo-Pacific fish Scomberomorus commerson in Rhodes (Greece). Mediterr Mar Sci. 2008;9:167–172. doi:10.12681/mms.147
  • Conrad JL, Weinersmith KL, Brodin T, et al. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J Fish Biol. 2011;78:395–435. doi:10.1111/j.1095-8649.2010.02874.x
  • Falautano M, Castriota L, Finoia MG, et al. Feeding ecology of little tunny Euthynnus alletteratus in the central Mediterranean Sea. J Mar Biol Assoc UK. 2007;87:999–1005. doi:10.1017/S0025315407055798
  • Giménez J, Puigarnau S, Morán E, et al. Interannual trophic behaviour of a pelagic fish predator in the western Mediterranean Sea. Mar Environ Res. 2021;168:105288. doi:10.1016/j.marenvres.2021.105288
  • Bahou L, Koné T, N’Douba V, et al. Food composition and feeding habits of little tunny (Euthynnus alletteratus) in continental shelf waters of Côte d’Ivoire (West Africa). ICES J Mar Sci. 2007;64:1044–1052. doi:10.1093/icesjms/fsm065
  • Albo-Puigserver M, Navarro J, Coll M, et al. Trophic structure of pelagic species in the northwestern Mediterranean Sea. J Sea Res. 2016;117:27–35. doi:10.1016/j.seares.2016.09.003
  • Estrada JA, Lutcavage M, Thorrold SR. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Mar Biol. 2005;147:37–45. doi:10.1007/s00227-004-1541-1
  • Fletcher N, Batjakas IE, Pierce GJ. Diet of the Atlantic bonito Sarda sarda (Bloch, 1793) in the Northeast Aegean Sea. J Appl Ichthyol. 2013;29:1030–1035. doi:10.1111/jai.12164
  • Alatorre-Ramirez VG, Galvan-Magaria F, Torres-Rojas YE, et al. Trophic segregation of mixed schools of yellow fin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) caught in the eastern tropical Pacific Ocean. Fish Bull. 2017;115:252–268. doi:10.7755/FB.115.2.11
  • Zudaire I, Murua H, Grande M, et al. Variations in the diet and stable isotope ratios during the ovarian development of female yellowfin tuna (Thunnus albacares) in the Western Indian Ocean. Mar Biol. 2015;162:2363–2377. doi:10.1007/s00227-015-2763-0
  • Griffiths SP, Fry GC, Manson FJ, et al. Feeding dynamics, consumption rates and daily ration of longtail tuna (Thunnus tonggol) in Australian waters, with emphasis on the consumption of commercially important prawns. Mar Freshw Res. 2007;58:376–397. doi:10.1071/MF06197
  • Santos AMP, Chicharo A, dos Santos A, et al. Physical–biological interactions in the life history of small pelagic fish in the Western Iberia Upwelling Ecosystem. Prog Oceanogr. 2007;74:192–209. doi:10.1016/j.pocean.2007.04.008
  • Prieto L, Navarro G, Rodríguez-Gálvez S, et al. Oceanographic and meteorological forcing of the pelagic ecosystem on the Gulf of Cadiz shelf (SW Iberian Peninsula). Cont Shelf Res. 2009;29:2122–2137. doi:10.1016/j.csr.2009.08.007
  • Goni N, Logan J, Arrizabalaga H, et al. Variability of albacore (Thunnus alalunga) diet in the Northeast Atlantic and Mediterranean Sea. Mar Biol. 2011;158:1057–1073. doi:10.1007/s00227-011-1630-x
  • Besnard L, Duchatelet L, Bird CS, et al. Diet consistency but large-scale isotopic variations in a deep-sea shark: the case of the velvet belly lantern shark, Etmopterus spinax, in the northeastern Atlantic region and Mediterranean Sea. Deep-Sea Res Part I-Oceanogr Res Pap. 2022;182:103708.
  • Orsi Relini L, Garibaldi F, Cima C, et al. Biology of Atlantic bonito, Sarda sarda (Bloch, 1793), in the western and central Mediterranean a summary concerning a possible stock unit. Coll Vol Sci Pap ICCAT. 2005;58:575–588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.