113
Views
0
CrossRef citations to date
0
Altmetric
Ecology

Anaerobic dihydrogen consumption of nutrient-limited aquifer sediment microbial communities examined by stable isotope analysis

, , , , &
Pages 103-121 | Received 27 Mar 2023, Accepted 21 Dec 2023, Published online: 12 Feb 2024

References

  • BMWi. Die Nationale Wasserstoffstrategie. Berlin: Bundesministerium für Wirtschaft und Energie; 2020. German. https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/die-nationale-wasserstoffstrategie.html
  • European Commission. A hydrogen strategy for a climate-neutral Europe. Brussels: European Union; 2020.
  • Tarkowski R. Underground hydrogen storage: characteristics and prospects. Renew Sustain Energy Rev. 2019;105:86–94. doi: 10.1016/j.rser.2019.01.051
  • Cahill AG, Steelman CM, Forde O, et al. Mobility and persistence of methane in groundwater in a controlled-release field experiment. Nat Geosci. 2017;10(4):289–294. doi: 10.1038/ngeo2919
  • Forde ON, Cahill AG, Mayer KU, et al. Hydro-biogeochemical impacts of fugitive methane on a shallow unconfined aquifer. Sci Total Environ. 2019;690:1342–1354. doi: 10.1016/j.scitotenv.2019.06.322
  • Griebler C, Lüders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–677. doi: 10.1111/j.1365-2427.2008.02013.x
  • Lovley DR, Goodwin S. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim Cosmochim Acta. 1988;52:2993–3003. doi: 10.1016/0016-7037(88)90163-9
  • Bryant MP, Campbell LL, Reddy CA, et al. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Env Microbiol. 1977;33:1162–1169. doi: 10.1128/aem.33.5.1162-1169.1977
  • Seitz H-J, Schink B, Conrad R. Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate. FEMS Microbiol Lett. 1988;55:119–124. doi: 10.1111/j.1574-6968.1988.tb13918.x
  • Gregory SP, Barnett MJ, Field LP, et al. Subsurface microbial hydrogen cycling: natural occurrence and implications for industry. Microorganisms. 2019;7:53. doi: 10.3390/microorganisms7020053
  • Nealson KH, Inagaki F, Takai K. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol. 2005;13:405–410. doi: 10.1016/j.tim.2005.07.010
  • Greening C, Biswas A, Carere CR, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–777. doi: 10.1038/ismej.2015.153
  • Dopffel N, Jansen S, Gerritse J. Microbial side effects of underground hydrogen storage – Knowledge gaps, risks and opportunities for successful implementation. Int J Hydrog Energy. 2021;46:8594–8606. doi: 10.1016/j.ijhydene.2020.12.058
  • Šmigáň P, Greksak M, Kozánková J, et al. Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir. FEMS Microbiol Ecol. 1990;6:221–224.
  • Belay N, Sparling R, Daniels L. Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus. Appl Environ Microbiol. 1986;52:1080–1085. doi: 10.1128/aem.52.5.1080-1085.1986
  • Boone DR, Johnson RL, Liu Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol. 1989;55(7):1735–1741. doi: 10.1128/aem.55.7.1735-1741.1989
  • Fuchs G. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Lett. 1986;39(3):181–213. doi: 10.1111/j.1574-6968.1986.tb01859.x
  • Rakoczy J, Schleinitz KM, Müller N, et al. Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions. FEMS Microbiol Ecol. 2011;77:238–247. doi: 10.1111/j.1574-6941.2011.01101.x
  • Berta M. Experimental investigation of hydrogeochemical consequences of gas leakages into shallow aquifers [dissertation]. University of Kiel; 2017. Available from: https://macau.uni-kiel.de/receive/diss_mods_00020740.
  • Lagmöller L, Dahmke A, Ebert M, et al. Geochemical effects of hydrogen intrusions into shallow groundwater – an incidence scenario from underground gas storage. Conference presentation, IAH Groundwater Quality, Liège, Belgium; 2019. Available from: https://www.uee.uliege.be/upload/docs/application/pdf/2019-10/90._vortrag_gq_2019_lagmoller_05.09.2019_fd5_ds_am_me_ad_ll12.pdf.
  • Berta M, Dethlefsen F, Ebert M, et al. Geochemical effects of millimolar hydrogen concentrations in groundwater: an experimental study in the context of subsurface hydrogen storage. Environ Sci Technol. 2018;52:4937–4949. doi: 10.1021/acs.est.7b05467
  • Bradley AS, Leavitt WD, Schmidt M, et al. Patterns of sulfur isotope fractionation during microbial sulfate reduction. Geobiology. 2016;14:91–101. doi: 10.1111/gbi.12149
  • Dinkla IJT, Gabor EM, Janssen DB. Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid. Appl Environ Microbiol. 2001;67:3406–3412. doi: 10.1128/AEM.67.8.3406-3412.2001
  • Harder W, Dijkhuizen L. Physiological responses to nutrient limitation. Annu Rev Microbiol. 1983;37:1–23. doi: 10.1146/annurev.mi.37.100183.000245
  • Sim MS, Ono S, Bosak T. Effects of iron and nitrogen limitation on sulfur isotope fractionation during microbial sulfate reduction. Appl Env Microbiol. 2012;78:8368–8376. doi: 10.1128/AEM.01842-12
  • Fry B. Stable isotope ecology. New York: Springer; 2006.
  • Gat JR, Mook WG, Meijer HAJ. Atmospheric water. In: Mook WG, editor. Environmental isotopes in the hydrological cycle: principles and applications. 2nd ed., Vol. 2. UNESCO, IAEA; 2001. https://gnssn.iaea.org/main/ncp/Tunisia/lrae/documents/tracers/Volume_II.pdf
  • Sharp Z. Principles of stable isotope geochemistry. 2nd ed. London: Pearson/Prentice Hall; 2017.
  • Hoberman HD, Rittenberg D. Biological catalysis of the exchange reaction between water and hydrogen. J Biol Chem. 1943;147:211–227. doi: 10.1016/S0021-9258(18)72430-7
  • Löffler M, Kümmel S, Vogt C, et al. H2 kinetic isotope fractionation superimposed by equilibrium isotope fractionation during hydrogenase activity of D. vulgaris Strain Miyazaki. Front Microbiol. 2019; doi: 10.3389/fmicb.2019.01545
  • Vignais PM. Hydrogenases and H+-reduction in primary energy conservation. In: Schäfer G, Penefsky HS, editor. Bioenergetics: energy conservation and conversion. Berlin; Heidelberg: Springer; 2007. p. 223–252.
  • Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem. 2005;36:739–752. doi: 10.1016/j.orggeochem.2004.09.006
  • Hunger S, Schmidt O, Hilgarth M, et al. Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil. Appl Environ Microbiol. 2011;77:3773–3785. doi: 10.1128/AEM.00282-11
  • Whiticar MJ. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol. 1999;161:291–314. doi: 10.1016/S0009-2541(99)00092-3
  • Whiticar MJ, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim Cosmochim Acta. 1986;50:693–709. doi: 10.1016/0016-7037(86)90346-7
  • Woltemate I, Whiticar MJ, Schoell M. Carbon and hydrogen isotopic composition of bacterial methane in a shallow freshwater lake. Limnol Oceanogr. 1984;29:985–992. doi: 10.4319/lo.1984.29.5.0985
  • Dethlefsen F, Nolde M, Schäfer D, et al. Basic parameterization of Schleswig–Holstein’s shallow geological formations for numerical reactive transport simulations: representative groundwater compositions. Environ Earth Sci. 2017;76:59. doi: 10.1007/s12665-016-6343-5
  • Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom. 2011;25:2538–2560. doi: 10.1002/rcm.5129
  • Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808
  • Steinberg LM, Regan JM. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol. 2008;74:6663–6671. doi: 10.1128/AEM.00553-08
  • Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200
  • Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869
  • Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219
  • SILVA database [Internet]. Available from: http://www.arb-silva.de
  • Bottinga Y. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor. Geochim Cosmochim Acta. 1969;33:49–64. doi: 10.1016/0016-7037(69)90092-1
  • Crist RH, Dalin GA. “Isotopic equilibria” in the hydrogen-hydrogen oxide system. J Chem Phys. 1934;2:735–738. doi: 10.1063/1.1749388
  • Löffler M, Schrader M, Lüders K, et al. Stable hydrogen isotope fractionation of hydrogen in a field injection experiment: simulation of a gaseous H2 leakage. ACS Earth Space Chem. 2022;6:631–641. doi: 10.1021/acsearthspacechem.1c00254
  • Blaser MB, Dreisbach LK, Conrad R. Carbon isotope fractionation of 11 acetogenic strains grown on H2 and CO2. Appl Environ Microbiol. 2013;79:1787–1794. doi: 10.1128/AEM.03203-12
  • Fuchs G, Thauer R, Ziegler H, et al. Carbon isotope fractionation by Methanobacterium thermoautotrophicum. Arch Microbiol. 1979;120:135–139. doi: 10.1007/BF00409099
  • Gelwicks JT, Risatti JB, Hayes JM. Carbon isotope effects associated with autotrophic acetogenesis. Org Geochem. 1989;14:441–446. doi: 10.1016/0146-6380(89)90009-0
  • Valentine DL, Sessions AL, Tyler SC, et al. Hydrogen isotope fractionation during H2/CO2 acetogenesis: hydrogen utilization efficiency and the origin of lipid-bound hydrogen. Geobiology. 2004;2:179–188. doi: 10.1111/j.1472-4677.2004.00030.x
  • Douglas PM, Stolper DA, Eiler JM, et al. Methane clumped isotopes: progress and potential for a new isotopic tracer. Org Geochem. 2017;113:262–282. doi: 10.1016/j.orggeochem.2017.07.016
  • McIntosh JC, Hendry MJ, Ballentine C, et al. A critical review of state-of-the-art and emerging approaches to identify fracking-derived gases and associated contaminants in aquifers. Environ Sci Technol. 2019;53:1063–1077. doi: 10.1021/acs.est.8b05807
  • Cummings D, Caccavo F, Springs S, et al. Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol. 1999;171:183–188. doi: 10.1007/s002030050697
  • Coates JD, Ellis DJ, Gaw CV, et al. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Evol Microbiol. 1999;49:1615–1622. doi: 10.1099/00207713-49-4-1615
  • Alazard D, Joseph M, Battaglia-Brunet F, et al. Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments: new taxa: Firmicutes (Class Clostridia, Order Clostridiales, Family Peptococcaceae). Extremophiles. 2010;14:305–312. doi: 10.1007/s00792-010-0309-4
  • Dolla A, Pohorelic BKJ, Voordouw JK, et al. Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch Microbiol. 2000;174:143–151. doi: 10.1007/s002030000183
  • Elias DA, Suflita JM, McInerney MJ, et al. periplasmic cytochrome c3 of Desulfovibrio vulgaris is directly involved in H2-mediated metal but not sulfate reduction. Appl Environ Microbiol. 2004;70:413–420. doi: 10.1128/AEM.70.1.413-420.2004
  • Fauque GD, Berlier YM, Czechowski MH, et al. A proton–deuterium exchange study of three types of Desulfovibrio hydrogenases. J Ind Microbiol. 1987;2:15–23. doi: 10.1007/BF01569401
  • Ramamoorthy S, Sass H, Langner H, et al. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol. 2006;56:2729–2736. doi: 10.1099/ijs.0.63610-0
  • Robertson W, Bowman J, Franzmann P, et al. Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol. 2001;51:133–140. doi: 10.1099/00207713-51-1-133
  • Sánchez-Andrea I, Stams AJ, Hedrich S, et al. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles. 2015;19:39–47. doi: 10.1007/s00792-014-0701-6
  • Deckers HM, Wilson FR, Voordouw G. Cloning and sequencing of a [NiFe]hydrogenase operon from Desulfovibrio vulgaris Miyazaki F. Microbiology. 1990;136:2021–2028.
  • Noguera DR, Brusseau GA, Rittmann BE, et al. A unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. Biotechnol Bioeng. 1998;59:732–746.
  • Peck HD. The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc Natl Acad Sci. 1959;45:701–708. doi: 10.1073/pnas.45.5.701
  • Tsuji K, Yagi T. Significance of hydrogen burst from growing cultures of Desulfovibrio vulgaris, Miyazaki, and the role of hydrogenase and cytochrome c3 in energy production system. Arch Microbiol. 1980;125:35–42. doi: 10.1007/BF00403195
  • Sun B, Cole JR, Sanford RA, et al. Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol. 2000;66:2408–2413. doi: 10.1128/AEM.66.6.2408-2413.2000
  • Phelps T, Conrad R, Zeikus J. Sulfate-dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate or methanol. Appl Environ Microbiol. 1985;50:589–594. doi: 10.1128/aem.50.3.589-594.1985
  • Badziong W, Ditter B, Thauer RK. Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source. Arch Microbiol. 1979;123:301–305. doi: 10.1007/BF00406665
  • Jansen K, Thauer RK, Widdel F, et al. Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol. 1984;138:257–262. doi: 10.1007/BF00402132
  • Schauer NL, Ferry JG. Metabolism of formate in Methanobacterium formicicum. J Bacteriol. 1980;142:800–807. doi: 10.1128/jb.142.3.800-807.1980
  • Zeikus JG, Wolee RS. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol. 1972;109:707–713. doi: 10.1128/jb.109.2.707-713.1972
  • Thauer RK. Methyl (alkyl)-coenzyme M reductases: nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry. 2019;58:5198–5220. doi: 10.1021/acs.biochem.9b00164
  • Thauer RK, Kaster A-K, Goenrich M, et al. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem. 2010;79:507–536. doi: 10.1146/annurev.biochem.030508.152103
  • Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol. 2012;60:91–210. doi: 10.1016/B978-0-12-398264-3.00002-4
  • Wintsche B, Glaser K, Sträuber H, et al. Trace elements induce predominance among methanogenic activity in anaerobic digestion. Front Microbiol. 2016;7:2034. doi: 10.3389/fmicb.2016.02034
  • Glass J, Orphan VJ. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol. 2012;3:61.
  • Zerkle AL, House CH, Brantley SL. Biogeochemical signatures through time as inferred from whole microbial genomes. Am J Sci. 2005;305:467–502. doi: 10.2475/ajs.305.6-8.467
  • Bagnoud A, Chourey K, Hettich RL, et al. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. Nat Commun. 2016;7(1):12770. doi: 10.1038/ncomms12770

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.