2,110
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Multi-directional Falling Weight Deflectometer (FWD) testing and quantification of the effective modulus of subgrade reaction for concrete roads

, , , , & ORCID Icon
Article: 2006651 | Received 24 Aug 2021, Accepted 06 Nov 2021, Published online: 06 Dec 2021

References

  • Abd El-Raof, H.S., et al., 2018. Simplified closed-form procedure for network-level determination of pavement layer moduli from falling weight deflectometer data. Journal of Transportation Engineering, Part B: Pavements, 144 (4), 04018052.
  • Aristorenas, G., and Gómez, J., 2014. Subgrade modulus—Revisited. Struct. Mag, 9–11.
  • Biot, M.A., 1937. Bending of an infinite beam on an elastic foundation. Journal of Applied Mechanics, 4, A1–A7.
  • Daloglu, A.T., and Vallabhan, C.G., 2000. Values of k for slab on Winkler foundation. Journal of Geotechnical and Geoenvironmental Engineering, 126 (5), 463–471.
  • Eisenberger, M., 1990. Application of symbolic algebra to the analysis of plates on variable elastic foundation. Journal of Symbolic Computation, 9 (2), 207–213.
  • Foyouzat, M., Mofid, M., and Akin, J., 2016. Free vibration of thin circular plates resting on an elastic foundation with a variable modulus. Journal of Engineering Mechanics, 142 (4), 04016007.
  • Germain, P., 1972. Sur l'application de la méthode des puissances virtuelles en mécanique des milieux continus ([on the application of the method of virtual power in continuum mechanics)]. Comptes Rendus de l'Académie des Sciences Paris, 274, 1051–1055 (in French).
  • Girija Vallabhan, C., Thomas Straughan, W., and Das, Y., 1991. Refined model for analysis of plates on elastic foundations. Journal of Engineering Mechanics, 117 (12), 2830–2843.
  • Goktepe, A.B., Agar, E., and Lav, A.H., 2006. Advances in backcalculating the mechanical properties of flexible pavements. Advances in Engineering Software, 37 (7), 421–431.
  • Gupta, A., 2021. Analytical investigations on short-paneled concrete pavements using finite element analysis. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1–16. Available from: https://doi.org/10.1007/s40996-021-00595-x.
  • Han, C., et al., 2021. Application of a hybrid neural network structure for FWD backcalculation based on LTPP database. International Journal of Pavement Engineering, 1–14. Available from: https://doi.org/10.1080/10298436.2021.1883016.
  • Hellmich, C., Mang, H.A., and Ulm, F.J., 2001. Hybrid method for quantification of stress states in shotcrete tunnel shells: combination of 3d in situ displacement measurements and thermochemoplastic material law. Computers & Structures, 79 (22–25), 2103–2115.
  • Höller, R., et al., 2019. Rigorous amendment of Vlasov's theory for thin elastic plates on elastic winkler foundations, based on the principle of virtual power. European Journal of Mechanics – A/Solids, 73, 449–482.
  • Kausel, E., and Roësset, J.M., 1981. Stiffness matrices for layered soils. Bulletin of the Seismological Society of America, 71 (6), 1743–1761.
  • Khazanovich, L., 2000. Dynamic analysis of FWD test results for rigid pavements. In: E.O. Lukanen, ed. (Committee D04 on Road and Paving Materials) Nondestructive testing of pavements and backcalculation of moduli: Third volume. ASTM International, 398–412. doi:10.1520/STP14780S.
  • Larkela, A., Mengelt, M., and Stapelfeldt, T., 2013. Determination of distribution of modulus of subgrade reaction. In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, French Society for Soil Mechanics and Geotechnical Engineering (CFMS), Paris, France, 1313–1315.
  • Lehmann, E.L., and Romano, J.P., 2006. Testing statistical hypotheses. New York: Springer Science & Business Media. doi:10.1007/0-387-27605-X.
  • Levenberg, E., 2013. Inverse analysis of viscoelastic pavement properties using data from embedded instrumentation. International Journal for Numerical and Analytical Methods in Geomechanics, 37 (9), 1016–1033.
  • Li, M., and Wang, H., 2019. Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters. International Journal of Pavement Engineering, 20 (4), 490–498.
  • Li, M., et al., 2017. Finite element modeling and parametric analysis of viscoelastic and nonlinear pavement responses under dynamic FWD loading. Construction and Building Materials, 141, 23–35.
  • Loizos, A., and Scarpas, A., 2005. Verification of falling weight deflectometer backanalysis using a dynamic finite elements simulation. International Journal of Pavement Engineering, 6 (2), 115–123.
  • Martin, U., et al., 2016. Abschätzung der Untergrundverhältnisse am Bahnkörper anhand des Bettungsmoduls. ETR-Eisenbahntechnische Rundschau, 5, 50–57.
  • Mehta, Y., and Roque, R., 2003. Evaluation of FWD data for determination of layer moduli of pavements. Journal of Materials in Civil Engineering, 15 (1), 25–31.
  • Murthy, V., 2011. Textbook of soil mechanics and foundation engineering. New Delhi: CBS Publishers & Distributors/Alkem Company (S).
  • Nielson, F.D., Bhandhausavee, C., and Yeb, K.S., 1969. Determination of modulus of soil reaction from standard soil tests. Highway Research Record, 284, 1–12.
  • Pan, E., 1989a. Static response of a transversely isotropic and layered half-space to general dislocation sources. Physics of the Earth and Planetary Interiors, 58 (2–3), 103–117.
  • Pan, E., 1989b. Static response of a transversely isotropic and layered half-space to general surface loads. Physics of the Earth and Planetary Interiors, 54 (3–4), 353–363.
  • Ping, W.V., and Sheng, B., 2011. Developing correlation relationship between modulus of subgrade reaction and resilient modulus for Florida subgrade soils. Transportation Research Record, 2232 (1), 95–107.
  • Popper, K., 1962. Conjectures and refutations: the growth of scientific knowledge. London: Routledge.
  • Putri, E.E., Rao, N., and Mannan, M., 2012. Evaluation of modulus of elasticity and modulus of subgrade reaction of soils using CBR test. Journal of Civil Engineering Research, 2 (1), 34–40.
  • Rabcewicz, L.v., 1965. The new Austrian tunnelling method. Water Power, 511–515.
  • Rahim, A., and George, K., 2003. Falling weight deflectometer for estimating subgrade elastic moduli. Journal of Transportation Engineering, 129 (1), 100–107.
  • Roesler, J.R., et al., 2016. Concrete slab analyses with field-assigned non-uniform support conditions. International Journal of Pavement Engineering, 17 (7), 578–589.
  • Sawant, V., 2009. Dynamic analysis of rigid pavement with vehicle–pavement interaction. International Journal of Pavement Engineering, 10 (1), 63–72.
  • Schubert, W., and Lauffer, H., 2012. NATM – from a construction method to a system. Geomechanics and Tunnelling, 5 (5), 455–463. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/geot.201200032.
  • Sharma, S., and Das, A., 2008. Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network. Canadian Journal of Civil Engineering, 35 (1), 57–66.
  • Smith, I.M., 1970. A finite element approach to elastic soil–structure interaction. Canadian Geotechnical Journal, 7 (2), 95–105.
  • Ullah, S., Pichler, B., and Hellmich, C., 2013. Modeling ground-shell contact forces in NATM tunneling based on three-dimensional displacement measurements. Journal of Geotechnical and Geoenvironmental Engineering, 139 (3), 444–457.
  • Varma, S., Kutay, M.E., and Levenberg, E., 2013. Viscoelastic genetic algorithm for inverse analysis of asphalt layer properties from falling weight deflections. Transportation Research Record, 2369 (1), 38–46.
  • Vesić, A.B., 1961. Bending of beams resting on isotropic elastic solid. Journal of the Engineering Mechanics Division, 87 (2), 35–53.
  • Vlasov, V.Z., 1966. Beams, plates and shells on elastic foundation. Israel Program for Scientific Translation.
  • Wang, H., and Li, M., 2016. Comparative study of asphalt pavement responses under FWD and moving vehicular loading. Journal of Transportation Engineering, 142 (12), 04016069.
  • Winkler, E., 1867. Die Lehre von der Elasticität und Festigkeit mit besonderer Rücksicht auf ihre Anwendung in der Technik [lessons on elasticity and strength of materials with special consideration of their application in technology].