423
Views
5
CrossRef citations to date
0
Altmetric
Research Article

3D Virtual reconstruction of asphalt mixture microstructure based on rigid body dynamic simulation

, , , &
Article: 2165654 | Received 15 Jun 2022, Accepted 02 Jan 2023, Published online: 02 Feb 2023

References

  • Adhikari, S., and You, Z., 2011. Investigating the sensitivity of aggregate size within sand mastic by modeling the microstructure of an asphalt mixture. Journal of Materials in Civil Engineering, 580–586. doi:10.1061/(asce)mt.1943-5533.0000212.
  • Chen, J., et al., 2015. Evaluation of thermal conductivity of asphalt concrete with heterogeneous microstructure. Applied Thermal Engineering, 368–374. doi:10.1016/j.applthermaleng.2015.03.070.
  • Chen, J., et al., 2016. Evaluation of pavement responses and performance with thermal modified asphalt mixture. Materials & Design, 88–97. doi:10.1016/j.matdes.2016.08.085.
  • Chen, J., Wang, H., and Li, L., 2015. Determination of effective thermal conductivity of asphalt concrete with random aggregate microstructure. Journal of Materials in Civil Engineering, 04015045. doi:10.1061/(asce)mt.1943-5533.0001313.
  • Dai, Q., 2011. Two- and three-dimensional micromechanical viscoelastic finite element modeling of stone-based materials with X-ray computed tomography images. Construction and Building Materials, 1102–1114. doi:10.1016/j.conbuildmat.2010.06.066.
  • Garcia-Hernandez, A., et al., 2021. Creation of realistic virtual aggregate avatars. Powder Technology, 760–771. doi:10.1016/j.powtec.2020.10.036.
  • Garcia-Hernandez, A., et al., 2021. Generation of virtual asphalt concrete in a physics engine. Construction and Building Materials, 122972. doi:10.1016/j.conbuildmat.2021.122972.
  • Han, D., et al., 2020. Research on thermal properties and heat transfer of asphalt mixture based on 3D random reconstruction technique. Construction and Building Materials, 121393. doi:10.1016/j.conbuildmat.2020.121393.
  • Han, Y., et al., 2021. Effects of design parameters and moisture conditions on interface bond strength between thin friction course (TFC) and underlying asphalt pavements. Construction and Building Materials, 121347, doi:10.1016/j.conbuildmat.2020.121347.
  • Han, D., et al., 2021. Performance prediction of asphalt mixture based on dynamic reconstruction of heterogeneous microstructure. Powder Technology, 356–366. doi:10.1016/j.powtec.2021.07.022.
  • Han, Y., et al., 2022. Evaluating the thermal aging-induced raveling potential of thin friction course (TFC). Construction and Building Materials, 126160. doi:10.1016/j.conbuildmat.2021.126160.
  • Hassn, A., et al., 2016. Effect of air voids content on thermal properties of asphalt mixtures. Construction and Building Materials, 327–335. doi:10.1016/j.conbuildmat.2016.03.106.
  • Kim, Y. J., and Lin, M. C., 2004. Incremental penetration depth estimation between convex polytopes using dual-space expansion. IEEE Transactions on Visualization and Computer Graphics, 152–163. doi:10.1109/TVCG.2004.1260767.
  • Kusumawardani, D. M., and Wong, Y. D., 2022. Assessment of packing structure of porous asphalt mixture (PAM) based on image-based analysis. International Journal of Pavement Research and Technology, 1–10. doi:10.1007/s42947-022-00187-6.
  • Lira, B., Jelagin, D., and Birgisson, B., 2012. Gradation-based framework for asphalt mixture. Materials and Structures, 1401–1414. doi:10.1617/s11527-012-9982-3.
  • Liu, Y., et al., 2018. Aggregate morphological characterization with 3d optical scanner versus x-ray computed tomography. Journal of Materials in Civil Engineering, 04017248. doi:10.1061/(asce)mt.1943-5533.0002091.
  • Liu, G., et al., 2020. Effects of asphalt mixture structure types on force chains characteristics based on computational granular mechanics. International Journal of Pavement Engineering, 1–17. doi:10.1080/10298436.2020.1784894.
  • Liu, G., et al., 2022. Asphalt mixture skeleton main force chains composition criteria and characteristics evaluation based on discrete element methods. Construction and Building Materials, 126313. doi:10.1016/j.conbuildmat.2022.126313.
  • Ma, T., et al., 2017. Heterogeneity effect of mechanical property on creep behavior of asphalt mixture based on micromechanical modeling and virtual creep test. Mechanics of Materials, 49–59. doi:10.1016/j.mechmat.2016.10.003.
  • Manrique-Sanchez, L., et al., 2020. Random generation of 2D PFC microstructures through DEM gravimetric methods. Road Materials and Pavement Design, 925–941. doi:10.1080/14680629.2020.1860804.
  • Ministry of Transport of the People’s Republic of China, 2005. Test methods of aggregate for highway engineering (JTG E42-2005). Beijing: China Communication Press.
  • Omar, H. A., et al., 2020. Effects of moisture damage on asphalt mixtures. Journal of Traffic and Transportation Engineering (English Edition), 600–628. doi:10.1016/j.jtte.2020.07.001.
  • Ong, C. J., and Gilbert, E. G., 2001. Fast versions of the Gilbert-Johnson-Keerthi distance algorithm: additional results and comparisons. IEEE Transactions on Robotics and Automation, 531–539. doi:10.1109/70.954768.
  • Taniguchi, S., Otani, J., and Kumagai, M., 2014. A study on characteristics evaluation to control quality of asphalt mixture using X-ray CT. Road Materials and Pavement Design, 892–910. doi:10.1080/14680629.2014.944204.
  • Wang, H., et al., 2016. Study on microstructure of rubberized recycled hot mix asphalt based X-ray CT technology. Construction and Building Materials, 177–184. doi:10.1016/j.conbuildmat.2016.05.166.
  • Wang, H., Wang, J., and Chen, J., 2014. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure. Engineering Fracture Mechanics, 104–119. doi:10.1016/j.engfracmech.2014.10.029.
  • Zhang, J., et al., 2018. 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates. Construction and Building Materials, 350–361. doi:10.1016/j.conbuildmat.2017.12.229.
  • Zhang, D., Gu, L., and Zhu, J., 2019. Effects of aggregate mesostructure on permanent deformation of asphalt mixture using three-dimensional discrete element modeling. Materials (Basel), doi:10.3390/ma12213601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.