235
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A stochastic neural network based approach for metamodelling of mechanical asphalt concrete properties

, , , &
Article: 2177650 | Received 13 Aug 2022, Accepted 30 Jan 2023, Published online: 22 Mar 2023

References

  • Abadi, M., et al., 2015. TensorFlow: large-scale machine learning on heterogeneous systems. Available from: https://www.tensorflow.org/.
  • Andrei, D., Witczak, M., and Mirza, M.W., 1999. Revised predictive model for dynamic (complex) modulus of asphalt mixtures: inter team technical report prepared for the NCHRP 1-37A project.
  • Asher, M.J., et al., 2015. A review of surrogate models and their application to groundwater modeling. Water Resources Research, 51 (8), 5957–5973.
  • Bari, J. and Witczak, M., 2006. Development of a new revised version of the Witczak E* predictive model for hot mix asphalt mixtures (with discussion). Journal of the Association of Asphalt Paving Technologists, 75, 381–423.
  • Castillo, D., 2015. Modeling the impact of air void heterogeneity in the response of asphalt mixtures subjected to mechanical-environmental degradation porcess. Dissertation. Universidad de los Andes, Bogota, Colombia.
  • Ceylan, H., Kim, S., and Gopalakrishnan, K., 2007. Hot mix asphalt dynamic modulus prediction models using neural networks approach. In: C.H. Dagli, ed. Intelligent engineering systems through artificial neural networks. Vol. 17. ASME Press, 117–123.
  • Chollet, F., et al., 2015. Keras. Available from: https://keras.io/.
  • Christensen, D.W. and Bonaquist, R., 2015. Improved Hirsch model for estimating the modulus of hot-mix asphalt. Road Materials and Pavement Design, 16, 254–274.
  • Christensen, D.W., Pellinen, T., and Bonaquist, R.F., 2003. Hirsch model for estimating the modulus of asphalt concrete. Journal of the Association of Asphalt Paving Technologists, 72, 97–121.
  • Dai, Q., 2010. Prediction of dynamic modulus and phase angle of stone-based composites using a micromechanical finite-element approach. Journal of Materials in Civil Engineering, 22 (6), 618–627.
  • Daneshvar, D. and Behnood, A., 2022. Estimation of the dynamic modulus of asphalt concretes using random forests algorithm. International Journal of Pavement Engineering, 23 (2), 250–260.
  • Dassault Systèmes Simulia Corp, 2017. Abaqus documentation. USA: Dassault Systèmes Simulia Corp. Available from: https://abaqus-docs.mit.edu/2017/English/SIMACAEEXCRefMap/simaexc-c-docproc.htm.
  • Francken, L. and Verstraeten, J., 1974. Characteristics of and factors influencing bituminous materials and mixtures: 14 reports prepared for the 53rd annual meeting of the highway research board. Transportation research record, Vol. 515. Washington, DC: Transportation Research Board National Research Council.
  • Ghasemi, P., et al., 2019. Principal component neural networks for modeling, prediction, and optimization of hot mix asphalt dynamics modulus. Infrastructures, 4 (3), 53.
  • Gong, H., et al., 2022. An efficient and robust method for predicting asphalt concrete dynamic modulus. International Journal of Pavement Engineering, 23 (8), 2565–2576.
  • Goodfellow, I., Bengio, Y., and Courville, A., 2016. Deep learning. Cambridge, MA and London: MIT Press.
  • Gopalakrishnan, K. and Kim, S., 2011. Support vector machines approach to HMA stiffness prediction. Journal of Engineering Mechanics, 137 (2), 138–146.
  • Haykin, S., 1999. Neural networks: a comprehensive foundation. 2nd ed. Upper Saddle River, NJ: Prentice Hall.
  • Jin, C., et al., 2018. Aggregate shape characterization using virtual measurement of three-dimensional solid models constructed from X-ray CT images of aggregates. Journal of Materials in Civil Engineering, 30 (3). doi:10.1061/(asce)mt.1943-5533.0002210.
  • Jin, C., Yang, X., and You, Z., 2017. Automated real aggregate modelling approach in discrete element method based on X-ray computed tomography images. International Journal of Pavement Engineering, 18 (9), 837–850.
  • Kingma, D.P. and Ba, J., 2015. Adam: a method for stochastic optimization. In: 3rd International conference on learning representations. San Diego.
  • Liu, P., et al., 2018. Influence of temperature on the mechanical response of asphalt mixtures using microstructural analysis and finite-element simulations. Journal of Materials in Civil Engineering, 30 (12), Article 04018327.
  • Peattie, K.R. and Ullditz, P., 1981. Simplified computing techniques for analysing flexible pavements. Proceedings of the Institution of Civil Engineers, 71 (1), 185–196.
  • Pedregosa, F., et al., 2011. Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
  • Regis, R.G. and Shoemaker, C.A., 2005. Constrained global optimization of expensive black box functions using radial basis functions. Journal of Global Optimization, 31 (1), 153–171.
  • Road and Transportation Research Association FGSV, 2006. Mechanisches Verhalten von Asphalt in Befestigungen für Verkehrsflächen: Eingangsgrößen in die Bemessung (Materialkennwerte). Köln: FGSV-Verlag.
  • Road and Transportation Research Association FGSV, 2008. Technische Lieferbedingungen für Asphaltmischgut für den Bau von Verkehrsflächenbefestigungen: TL Asphalt-StB 07. Köln: FGSV-Verlag.
  • Road and Transportation Research Association FGSV, 2017. Technische Prüfvorschriften für Verkehrsflächenbefestigungen – Betonbauweisen: Teil 0.2 Statistische Grundlagen zur Auswertung von Prüfergebnissen. Köln: FGSV-Verlag.
  • Sun, Y., et al., 2020. A two-dimensional random aggregate structure generation method: determining effective thermo-mechanical properties of asphalt concrete. Mechanics of Materials, 148, Article 103510.
  • Sun, Y., Huang, B., and Chen, J., 2015. A unified procedure for rapidly determining asphalt concrete discrete relaxation and retardation spectra. Construction and Building Materials, 93, 35–48.
  • Tschoegl, N.W., 1989. The phenomenological theory of linear viscoelastic behavior. Heidelberg: Springer Berlin.
  • Witczak, M., 2006. Simple performance tests: summary of recommended methods and database. Washington, DC: Transportation Research Board.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.