1,749
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of deep learning models for classification of asphalt pavement distresses

, &
Article: 2180641 | Received 16 Jun 2022, Accepted 10 Feb 2023, Published online: 24 Feb 2023

References

  • Akosa, JS, 2017. Predictive accuracy: a misleading performance measure for highly imbalanced data. Proceedings of the SAS Global Forum 2017 Conference. Cary, North Carolina: SAS Institute Inc., 2017, 942.
  • Bengio, Y, Courville, A, and Vincent, P, 2013. Representation learning: a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (8), 1798–1828. doi:10.1109/tpami.2013.50. PMID 23787338. S2CID 393948.
  • Bengio, Y, LeCun, Y, and Hinton, G, 2015. Deep learning. Nature, 521 (7553), 436–444. doi:10.1038/nature14539. PMID 26017442. S2CID 3074096.
  • Bottou, L, 2010. Large-scale machine learning with stochastic gradient descent. Proceedings of COMPSTAT, 2010, 177–186.
  • Chen, C, et al., 2022. Deep learning-based thermal image analysis for pavement defect detection and classification considering complex pavement conditions. Remote Sensing, 14 (1), 106. doi:10.3390/rs14010106.
  • Chicco, D., and Jurman, G, 2020. The advantages of the Matthews Correlation Coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21, 1.
  • Chollet, F., 2016. Xception: Deep learning with depthwise separable convolution. Available from: https://arxiv.org/pdf/1610.02357.pdf.
  • Dean, J., et al., 2012. Large scale distributed deep networks. NIPS 12: Proceedings of the 25th International Conference on Neural Information Processing Systems, Volume 1, December 2012, 1223–1231.
  • Deng, J, et al., 2009. ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255. doi: 10.1109/CVPR.2009.5206848.
  • Duntsch, I., and Gediga, J, 2019. 3rd international Conference on Machine Vision and Information Technology (CMVIT 2019). Journal of Physics: Conference Series, 1229, 011001.
  • Gopalakrishnan, K., et al., 2017. Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Construction and Building Materials, 157, 322–330.
  • Gopalakrishnan, K., et al., 2018. Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model. International Journal of Traffic and Transportation Engineering, 8 (1), 1–14.
  • Gopalakrishnan, K, 2018. Deep learning in data-driven pavement image analysis and automated distress detection: a review. Data, 3 (3), 28. doi:10.3390/data3030028.
  • He, K., et al., 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. doi: 10.1109/CVPR.2016.90.
  • Huang, G, Liu, Z, and van der Maaten, L, 2018. Densely connected convolutional networks. arXiv:1608.06993.
  • Iandola, FN, et al., 2016. Squeenet: Alexnet-level accuracy with 50x fewer parameters and <0.5 Mb model size. arXiv: Computer Vision and Pattern Recognition. https://arxiv.org/pdf/1602.07360.pdf.
  • Kornblith, S, Shlens, J, and Le, QV, 2018. Do better ImageNet models transfer better? http://arxiv.org/abs/1805.08974.
  • Krizhevsky, A., Sutskever, I., and Hinton, G. E, 2012. Imagenet classification with deep convolutional neural networks. Proc., 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 1097–1105.
  • Ma, K., Hoai, M., and Samaras, D, 2017. Large-scale continual road inspection: visual infrastructure assessment in the wild. Proceedings of the British Machine Vision Conference, London, UK, 4–7.
  • Maeda, H., et al., 2018. Road damage detection using deep neural networks with images captured through a smartphone. doi:10.1111/mice.12387.
  • Majidifard, H., et al., 2020. Pavement image datasets: A new benchmark dataset to classify and densify pavement distresses. Transportation Research Record: Journal of the Transportation Research Board, 2674 (2), 328–339.
  • Mandal, V., Uong, L., and Adu-Gyamfi, Y., 2018. Automated road crack detection using deep convolutional neural networks. 2018 IEEE International Conference on Big Data (Big Data).
  • Nie, M., and Wang, K, 2018. Pavement distress detection based on transfer learning. 2018 5th International Conference on Systems and Informatics (ICSAI), 435–439.
  • O’Mahony, N, 2020. Deep learning vs. traditional computer vision. In: K. Arai and S. Kapoor, eds. Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol. 943. Cham: Springer. doi:10.1007/978-3-030-17795-9_10.
  • Pan, S.J., and Yang, Q, 2010. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22, 1345–1359.
  • Peraka, NSP, Biligiri, KP, and Kalidindi, SN, 2021. Development of a multi-distress detection system for asphalt pavements: transfer learning-based approach. Transportation Research Record, 10, 538–553. doi:10.1177/03611981211012001.
  • Ranjbar, S., Nejad, F.M., and Zakeri, H, 2021. An image-based system for pavement crack evaluation using transfer learning and wavelet transform. International Journal of Pavement and Research Technology, 14, 437–449. doi:10.1007/s42947-020-0098-9.
  • Schmidhuber, J, 2015. Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. doi:10.1016/j.neunet.2014.09.003. PMID 25462637. S2CID 11715509.
  • Shin, H. C., et al., 2016. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35, 1285–1298.
  • Simonyan, K., and Zisserman, A, 2015. Very deep convolutional neural networks for large-scale image recognition. International Conference on Learning Representations, 1–14.
  • Siriborvornratanakul, T, 2018. An automatic road distress visual inspection system using an onboard in-car camera. Advances in Multimedia, 2018, 1–10.
  • Szegedy, C., et al., 2015a. Going deeper with convolutions. Computer Vision and Pattern Recognition, 1–9. doi:10.1109/CVPR.2015.7298594.
  • Szegedy, C., et al., 2015b. Rethinking the inception architecture for computer vision. arXiv:1512.00567. doi:10.1109/CVPR.2016.308.
  • Szegedy, C., Ioffe, S., and Vanhoucke, V, 2017. Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI, 4278–4284.
  • van der Maaten, L., and Hinton, G., 2008. Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.
  • Vavrik, W., et al., 2013. PCR evaluation – Consider transition from manual to semi-automated pavement distress collection and analysis. Ohio Department of Transportation. Office of Statewide Planning and Research.
  • Wu, Z, et al., 2016. Deep Learning for Video Classification and Captioning. In: Chang Shih-Fu, ed. Frontiers of Multimedia Research. New York: Association for Computing Machinery and Morgan & Claypool.
  • Zeiler, M., and Fergus, R, 2013. Visualizing and understanding convolutional networks. European Conference on Computer Vision (ECCV), 8689, 818–833.
  • Zhu, J, et al., 2022. Pavement distress detection using convolutional neural networks with images captured via UAV. Automation in Construction, 133. doi:10.1016/j.autcon.2021.103991.
  • Zoph, B., et al., 2018. Learning transferable architectures for scalable image recognition. arXiv:1707.07012.
  • Zoph, B., and Le, Q. V, 2017. Neural architecture search with reinforcement learning. International Conference on Learning Representations.