224
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Stabilization of calcareous subgrade soils with polyelectrolytes: mechanisms and mechanical properties

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2190976 | Received 04 Jun 2022, Accepted 06 Mar 2023, Published online: 23 Mar 2023

References

  • Acharya, R., et al., 2017. Assessment of guar gum biopolymer treatment toward mitigation of desiccation cracking on slopes built with expansive soils. Transportation Research Record, 2657, 78–88. doi:10.3141/2657-09.
  • Al-Saad, H, 2005. Lithostratigraphy of the middle eocene dammam formation in Qatar, Arabian gulf: effects of sea-level fluctuations along a tidal environment. Journal of Asian Earth Sciences, 25 (5), 781–789. doi:10.1016/j.jseaes.2004.07.009.
  • ASTM D1633-17, 2017. Standard test methods for compressive strength of molded soil-cement cylinders. West Conshohocken, PA: ASTM International. doi:10.1520/D1633-17.
  • ASTM D2487-17, 2017. Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA: ASTM International. doi:10.1520/d2487-17e01.
  • ASTM D698-12, 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kn-m/m3)). West Conshohocken, PA: ASTM International. doi:10.1520/d0698-12e01.
  • ASTM D7928-21, 2021. Particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. West Conshohocken, PA: ASTM International. doi:10.1520/d7928-21e01.
  • Cabalar, A.F., Awraheem, M.H., and Khalaf, M.M, 2018. Geotechnical properties of a low-plasticity clay with biopolymer. Journal of Materials in Civil Engineering, 30 (8), 04018170. doi:10.1061/(asce)mt.1943-5533.0002380.
  • Chang, I., Im, J., and Cho, G.C, 2016. Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal, 53 (10), 1658–1670. doi:10.1139/cgj-2015-0475.
  • Georgees, R.N., etal, 2016. Performance improvement of granular pavement materials using a polyacrylamide-based additive. In Khabbaz, H., etal, ed. Geo-China 2016: advances in pavement engineering and ground improvement, 25-27 July 2016, Shandong. Reston: American Society of Civil Engineers, 108–117.
  • Georgees, R.N., et al., 2018. Resilient response characterization of pavement foundation materials using a polyacrylamide-based stabilizer. Journal of Materials in Civil Engineering, 30 (1), 04017252. doi:10.1061/(asce)mt.1943-5533.0002109.
  • Gewert, B., Plassmann, M.M., and Macleod, M, 2015. Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science. Processes & Impacts, 17 (9), 1513–1521. doi:10.1039/c5em00207a.
  • Goldstein, J.I., et al., 2017. Scanning electron microscopy and x-ray microanalysis. New York: Springer.
  • Hataf, N., Ghadir, P., and Ranjbar, N, 2018. Investigation of soil stabilization using chitosan biopolymer. Journal of Cleaner Production, 170, 1493–1500. doi:10.1016/j.jclepro.2017.09.256.
  • Huang, J., et al., 2021. A state-of-the-art review of polymers used in soil stabilization. Construction and Building Materials, 305, doi:10.1016/j.conbuildmat.2021.124685.
  • Iyengar, S.R., et al., 2013. Pavement subgrade stabilization using polymers: characterization and performance. Journal of Materials in Civil Engineering, 25 (4), 472–483. doi:10.1061/(asce)mt.1943-5533.0000612.
  • Joga, J.R., and Varaprasad, B.J.S, 2020. Effect of xanthan gum biopolymer on dispersive properties of soils. World Journal of Engineering, 17 (4), 563–571. doi:10.1108/wje-05-2020-0152.
  • Kolay, P.K., and Dhakal, B, 2019. Geotechnical properties and microstructure of liquid polymer amended fine-grained soils. Geotechnical and Geological Engineering, doi:10.1007/s10706-019-01163-x.
  • Kushwaha, P., et al., 2019. Investigating the effects of nanochemical-based ionic stabilizer and co-polymer on soil properties for pavement construction. International Journal of Geotechnical Engineering, doi:10.1080/19386362.2019.1635817.
  • Latifi, N., et al., 2016. Xanthan gum biopolymer: An eco-friendly additive for stabilization of tropical organic peat. Environmental Earth Sciences, 75 (9), doi:10.1007/s12665-016-5643-0.
  • Latifi, N., et al., 2017. Improvement of problematic soils with biopolymer—an environmentally friendly soil stabilizer. Journal of Materials in Civil Engineering, 29 (2), doi:10.1061/(asce)mt.1943-5533.0001706.
  • Lee, S., et al., 2017. Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing. Geomechanics and Engineering, 12 (5), 831–847. doi:10.12989/gae.2017.12.5.831.
  • Lentz, R.D, 2015. Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam. Geoderma, 241, 289–294. doi:10.1016/j.geoderma.2014.11.019.
  • Liu, J., et al., 2017a. Study on the permeability characteristics of polyurethane soil stabilizer reinforced sand. Advances in Materials Science and Engineering, 2017, 5240186. doi:10.1155/2017/5240186.
  • Liu, J., et al., 2017b. Effect of polyvinyl acetate stabilization on the swelling-shrinkage properties of expansive soil. International Journal of Polymer Science, 2017, 8128020. doi:10.1155/2017/8128020.
  • Liu, J., et al., 2018. Evaluation of strength properties of sand modified with organic polymers. Polymers (Basel), 10 (3), 287. doi:10.3390/polym10030287.
  • Liu, W., et al., 2019. Microscopic mechanism affecting shear strength in lignin-treated loess samples. Advances in Materials Science and Engineering, 2019, 7126040. doi:10.1155/2019/7126040.
  • Liu, Y., et al., 2020. Use of sulfur-free lignin as a novel soil additive: A multi-scale experimental investigation. Engineering Geology, 269, doi:10.1016/j.enggeo.2020.105551.
  • Mirzababaei, M., Arulrajah, A. & Ouston, M., 2017. Polymers for stabilization of soft clay soils. In Petriaev, A. & Konon, A., eds. Proceedings of the international scientific conference transportation geotechnics and geoecology, 17-19 May, St. Petersburg. Amsterdam: Elsevier, 25–32.
  • Mohamed, S.W.A., 2004. Stabilization of desert sand using water-born polymers. Thesis (PhD). United Arab Emirates University.
  • Pavlukhina, S., and Sukhishvili, S., 2010. Polymer adsorption. In: Herman F. Mark, ed. Encyclopedia of polymer science and technology. 4th ed., Hoboken, NJ: John Wiley & Sons, 1–18.
  • Rezaeimalek, S., et al., 2017b. Comparison of short-term and long-term performances for polymer-stabilized sand and clay. Journal of Traffic and Transportation Engineering (English Edition), 4 (2), 145–155. doi:10.1016/j.jtte.2017.01.003.
  • Rezaeimalek, S., Huang, J., and Bin-Shafique, S, 2017a. Evaluation of curing method and mix design of a moisture activated polymer for sand stabilization. Construction and Building Materials, 146, 210–220. doi:10.1016/j.conbuildmat.2017.04.093.
  • Rodriguez, A.K., et al., 2018. Polyampholyte polymer as a stabiliser for subgrade soil. International Journal of Pavement Engineering, 19 (6), 467–478. doi:10.1080/10298436.2016.1175561.
  • Singer, A, 2002. Palygorskite and sepiolite. In: J. B. Dixon and D. G. Schulze, eds. Soil mineralogy with environmental applications, volume 7. Madison: the Soil Science Society of America, 555–583.
  • Soldo, A., and Miletic, M, 2019. Study on shear strength of xanthan gum-amended soil. Sustainability, 11 (21), doi:10.3390/su11216142.
  • Soldo, A., Miletic, M., and Auad, M.L, 2020. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Scientific Reports, 10, 1. doi:10.1038/s41598-019-57135-x.
  • Soltani-Jigheh, H., Bagheri, M., and Amani-Ghadim, A.R, 2019. Use of hydrophilic polymeric stabilizer to improve strength and durability of fine-grained soils. Cold Regions Science and Technology, 157, 187–195. doi:10.1016/j.coldregions.2018.10.011.
  • Soltani, A., et al., 2017. Swelling potential of a stabilized expansive soil: A comparative experimental study. Geotechnical and Geological Engineering, 35 (4), 1717–1744. doi:10.1007/s10706-017-0204-1.
  • Soltani, A., et al., 2019. Engineering reactive clay systems by ground rubber replacement and polyacrylamide treatment. Polymers (Basel), 11 (10), 1675. doi:10.3390/polym11101675.
  • Sujatha, E.R., and Saisree, S, 2019. Geotechnical behaviour of guar gum-treated soil. Soils and Foundations, 59 (6), 2155–2166. doi:10.1016/j.sandf.2019.11.012.
  • Sukhishvili, S.A., Kharlampieva, E., and Izumrudov, V, 2006. Where polyelectrolyte multilayers and polyelectrolyte complexes meet. Macromolecules, 39 (26), 8873–8881. doi:10.1021/ma061617p.
  • Yazdandoust, F., and Yasrobi, S.S, 2010. Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized expansive clays. Applied Clay Science, 50 (4), 461–468. doi:10.1016/j.clay.2010.09.006.
  • Zhang, T., Cai, G.J., and Liu, S.Y, 2017. Application of lignin-based by-product stabilized silty soil in highway subgrade: A field investigation. Journal of Cleaner Production, 142, 4243–4257. doi:10.1016/j.jclepro.2016.12.002.
  • Zumrawi, M.M.E., and Mohammed, A.E, 2019. Effects of poly vinyl acetate on characteristics of expansive soil. Journal of Materials and Engineering Structures, 6 (2), 167–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.