690
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Suitability of rubberised oil palm shell layers to stabilise concrete block pavement systems

, , ORCID Icon, ORCID Icon & ORCID Icon
Article: 2195180 | Received 02 Jun 2022, Accepted 20 Mar 2023, Published online: 02 Apr 2023

References

  • Ah, N. H., Nor, H. M., and Azman, M., 2014. Effect of jointing sand sizes and width on horizontal displacement of concrete block pavement. Jurnal Teknologi, 71 (3), doi:10.11113/jt.v71.3764.
  • Al-Oqla, F. M., and Sapuan, S., 2014. Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 66, 347–354. doi:10.1016/j.jclepro.2013.10.050.
  • Al-Qadi, I. L., Xie, W., and Elseifi, M. A, 2008. Frequency determination from vehicular loading time pulse to predict appropriate complex modulus in MEPDG. Asphalt Paving Technology-Proceedings, 77, 739.
  • Alengaram, U. J., et al., 2013. A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Materials & Design, 51, 522–529. doi:10.1016/j.matdes.2013.04.078.
  • Anandan, S., et al., 2020. Numerical and experimental investigation of oil palm shell reinforced rubber composites. Polymers, 12 (2), 314. doi:10.3390/polym12020314.
  • Asheghabadi, M. S., and Cheng, X., 2020. Analysis of undrained seismic behavior of shallow tunnels in soft clay using nonlinear kinematic hardening model. Applied Sciences, 10 (8), 2834. doi:10.3390/app10082834.
  • Baidya, D., and Krishna, G.M., 2001. Investigation of resonant frequency and amplitude of vibrating footing resting on a layered soil system. Geotechnical Testing Journal, 24 (4), 409–417. doi:10.1520/GTJ11138J.
  • Baidya, D., and Mandal, A., 2006. Dynamic response of footing resting on a layered soil system. West Indian Journal of Engineering, 28 (2), 65–79.
  • Basri, H., Mannan, M., and Zain, M. F. M., 1999. Concrete using waste oil palm shells as aggregate. Cement and Concrete Research, 29 (4), 619–622. doi:10.1016/S0008-8846(98)00233-6.
  • Chiroux, R., et al., 2005. Three-dimensional finite element analysis of soil interaction with a rigid wheel. Applied Mathematics and Computation, 162 (2), 707–722. doi:10.1016/j.amc.2004.01.013.
  • Di Mascio, P., Moretti, L., and Capannolo, A., 2019. Concrete block pavements in urban and local roads: analysis of stress-strain condition and proposal for a catalogue. Journal of Traffic and Transportation Engineering (English Edition), 6 (6), 557–566. doi:10.1016/j.jtte.2018.06.003.
  • Füssl, J., et al., 2018. Numerical simulation tool for paving block structures assessed by means of full-scale accelerated pavement tests. International Journal of Pavement Engineering, 19 (10), 917–929. doi:10.1080/10298436.2016.1224410.
  • Füssl, J., Kluger-Eigl, W., and Blab, R., 2016. Experimental identification and mechanical interpretation of the interaction behaviour between concrete paving blocks. International Journal of Pavement Engineering, 17 (6), 478. doi:10.1080/10298436.2014.993205.
  • Gazetas, G., 1981. Machine foundatios on deposits of soft clay overlain by a weathered crust. Géotechnique, 31 (3), 387–398.
  • Gunatilake, D., and Mampearachchi, W., 2019. Finite element modelling approach to determine optimum dimensions for interlocking concrete blocks used for road paving. Road Materials and Pavement Design, 20 (2), 280–296. doi:10.1080/14680629.2017.1385512.
  • Hanipah, S.H., Mohammed, M.A.P., and Baharuddin, A.S., 2016. Non-linear mechanical behaviour and bio-composite modelling of oil palm mesocarp fibres. Composite Interfaces, 23 (1), 37–49. doi:10.1080/09276440.2016.1091681.
  • Hasan, A. R., and Nair, P. L., 2014. Urbanisation and growth of metropolitan centres in Malaysia. Malaysian Journal of Economic Studies, 51 (1), 87–101.
  • Hassani, A., and Jamshidi, A., 2006. Modelling and structural design of a concrete block pavement system. 8th international conference on concrete block paving, November 2006, California USA.
  • Hegde, A., and Venkateswarlu, H., 2019. Mitigation of traffic induced vibration using geocell inclusions. Frontiers in Built Environment, 5, 136. doi:10.3389/fbuil.2019.00136.
  • HL-93 AASHTO Vehicular Live Loading, 2014. Online source. Available from: https://engineeringcivil.org/articles/bridge/hl-93-aashto-vehicular-live-loading-truck-tandem-design-lane-load/ [Accessed 25 January 2022]
  • Huurman, M, 1994. Longitudinal unevenness and dynamic axle loading: on concrete block pavements. Available from: http://www.sept.org/techpapers/511.pdf [Accessed March 2023].
  • Huurman, M., 1996. Development of traffic induced permanent strain in concrete block pavements, 41, 29-52. Available from: https://repository.tudelft.nl/islandora/object/uuid:1314a091-f6f3-422d-b2a8-4e14aeede69b/datastream/OBJ/download.
  • Huurman, M., et al., 2003. The upgraded Dutch design method for concrete block road pavements. 7th International Conference on Concrete Block Paving, Africa.
  • IRC: SP:63, 2004. Guidelines for the use of interlocking concrete block pavement. The Indian Roads Congress.
  • Jakubczyk-Galczynskaa, A., and Jankowskib, R., 2014. Traffic-induced vibrations. The impact on buildings and people. 9th international conference in environmental engineering, May 22-23, Lithuania. doi:10.3846/enviro.2014.028.
  • Karatzetzou, A., et al., 2014. A comparative study of elastic and nonlinear soil response analysis. 2nd European conference on earthquake engineering and seismology, Istanbul, Turkey.
  • Kelly, J. M., and Konstantinidis, D., 2011. Mechanics of rubber bearings for seismic and vibration isolation. United Kingdom: John Wiley & Sons. doi:10.1002/9781119971870.
  • La Agostinacchio, M., Ciampa, D., and Olita, S., 2008. The vibrations induced by surface irregularities in road pavements – a Matlab® approach. European Transport Research Review: Mechanisms, Modeling, Detection, Testing and Case Histories, 201), doi:10.1007/s12544-013-0127-8.
  • Lak, M. A., Degrande, G., and Lombaert, G., 2011. The effect of road unevenness on the dynamic vehicle response and ground-borne vibrations due to road traffic. Soil Dynamics and Earthquake Engineering, 31, 1357–1377. doi:10.1016/j.soildyn.2011.04.009.
  • Lilley, A. A., and Dowson, A. J., 1988. Laying course sand for concrete block paving. Available from: http://www.sept.org/techpapers/153.pdf.
  • Lin, W., Cho, Y.-H., and Kim, I. T., 2016. Development of deflection prediction model for concrete block pavement considering the block shapes and construction patterns. Advances in Materials Science and Engineering, 2016), doi:10.1155/2016/5126436.
  • Ling, T., et al., 2010. Long-term strength of rubberised concrete paving blocks. Proceedings of the Institution of Civil Engineers - Construction Materials, 163 (1), 19–26. doi:10.1680/coma.2010.163.1.19.
  • Loi, S. J., et al., 2020. Compaction characteristics of kaolin reinforced with Raw and rubberized Oil palm shell. Minerals, 10 (10), 863. doi:10.3390/min10100863.
  • Lombaert, G., Degrande, G., and Clouteau, D., 2000. Numerical modelling of free field traffic-induced vibrations. Soil Dynamics and Earthquake Engineering, 19 (7), 473–488. doi:10.1016/S0267-7261(00)00024-5.
  • Mampearachchi, W., and Gunarathna, W., 2010. Finite-element model approach to determine support conditions and effective layout for concrete block paving. Journal of Materials in Civil Engineering, 22 (11), 1139–1147. doi:10.1061/(ASCE)MT.1943-5533.0000118.
  • Murugan, R. B., Natarajan, C., and Chen, S.-E., 2016. Material development for a sustainable precast concrete block pavement. Journal of Traffic and Transportation Engineering (English Edition), 3 (5), 483–491. doi:10.1016/j.jtte.2016.09.001.
  • Panda, B. C., and Ghosh, A. K., 2002a. Structural behavior of concrete block paving. I: Sand in bed and joints. Journal of Transportation Engineering, 128 (2), 123–129. doi:10.1061/(ASCE)0733-947X(2002)128:2(123).
  • Panda, B. C., and Ghosh, A. K., 2002b. Structural behavior of concrete block paving. II: Concrete blocks. Journal of Transportation Engineering, 128 (2), 130–135. doi:10.1061/(ASCE)0733-947X(2002)128:2(130).
  • Park, J., Choi, S., and Jung, H. M., 2020. Measurement and analysis of vibration levels for truck transport environment in Korea. Applied Sciences, 10 (19), 6754. doi:10.3390/app10196754.
  • Population Reference Bureau, 2007. Online source. Available from: https://www.prb.org/resources/urban-population-to-become-the-new-majority-worldwide/ [Accessed 21 December 2022].
  • Priyadarshee, A., et al., 2018. Compaction and strength behavior of tire crumbles–fly ash mixed with clay. Journal of Materials in Civil Engineering, 30 (4), doi:10.1061/(ASCE)MT.1943-5533.0002171.
  • Rada, G. R., et al., 1992. Structural design of interlocking concrete pavements in North America. 4th Structural Design of Interlocking Concrete Pavement in North America, 1, 99-116. Available from: http://sept.org/techpapers/11.pdf.
  • Robert, D., Soga, K., and Britto, A., 2015. Soil constitutive models to simulate pipeline-soil interaction behaviour. International conference on geotechnical engineering ICGE Colombo, Sri Lanka.
  • Sacramento, C., 2002. Transportation-related earth borne vibrations. Technical Advisory. California Department of Transportation. Available from: http://www.vibrationdata.com/tutorials_alt/caltrans_earth.pdf.
  • Sahari, J., and Maleque, M., 2016. Mechanical properties of oil palm shell composites. International Journal of Polymer Science, 2016), doi:10.1155/2016/7457506.
  • Selcuk, I. A., and Cubukcu, K. M., 2015. Modelling traffic-induced, in-dwelling vibration using urban design and planning variables. Journal of Architectural and Planning Research, 307–323. Available from: https://www.jstor.org/stable/44113118.
  • Shackel, B., 1988. The evolution and application of mechanistic design procedures for concrete block pavements. 3rd international conference on concrete block paving, Rome. Available from: http://www.sept.org/techpapers/108.pdf.
  • Shackel, B., 1991. The performance of interlocking block pavements under accelerated trafficking. National Institute of Transport and Road Research, CSIR, South Africa. Available from: http://www.sept.org/techpapers/85.pdf.
  • Shafabakhsh, G., Family, A., and Abad, B. P. H., 2014. Numerical analysis of concrete block pavements and comparison of its settlement with asphalt concrete pavements using finite element method. Engineering Journal, 18 (4), 39–51. doi:10.4186/ej.2014.18.4.39.
  • Sivakumar Babu, G., and Vasudevan, A., 2008. Strength and stiffness response of coir fiber-reinforced tropical soil. Journal of Materials in Civil Engineering, 20 (9), 571–577. doi:10.1061/(ASCE)0899-1561(2008)20:9(571).
  • Soutsos, M. N., et al., 2011. The effect of construction pattern and unit interlock on the structural behaviour of block pavements. Construction and Building Materials, 25 (10), 3832–3840. doi:10.1016/j.conbuildmat.2011.04.002.
  • Teo, D.C., Mannan, M.A., and Kurian, J.V., 2006. Flexural behaviour of reinforced lightweight concrete beams made with oil palm shell (OPS). Journal of Advanced Concrete Technology, 4 (3), 459–468. doi:10.3151/jact.4.459.
  • Yadav, J. S., and Tiwari, S. K., 2017. A study on the potential utilization of crumb rubber in cement treated soft clay. Journal of Building Engineering, 9, 177–191. doi:10.1016/j.jobe.2017.01.001.
  • Yang, G., et al., 2016. Truck acceleration behavior study and acceleration lane length recommendations for metered on-ramps. International Journal of Transportation Science and Technology, 5 (2), 93–102. doi:10.1016/j.ijtst.2016.09.006.
  • Ye, Z., Lu, Y., and Wang, L., 2018. Investigating the pavement vibration response for roadway service condition evaluation. Advances in Civil Engineering, 2018, doi:10.1155/2018/2714657.
  • Zakeri, R., et al., 2021. Influence of rubber sheet on dynamic response of machine foundations. Construction and Building Materials, 274, 121788. doi:10.1016/j.conbuildmat.2020.121788.