230
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Image processing-based classification of pavement fatigue severity using extremely randomized trees, deep neural network, and convolutional neural network

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2201902 | Received 14 May 2022, Accepted 07 Apr 2023, Published online: 21 Apr 2023

References

  • Acosta, MRC, et al., 2020. Extremely randomized trees-based scheme for stealthy cyber-attack detection in smart grid networks. IEEE Access, 8, 19921–19933. doi:10.1109/ACCESS.2020.2968934.
  • Arif, TM, 2020. Introduction to Deep Learning for Engineers – Using Python and Google Cloud Platform Morgan & Claypool. doi:10.2200/S01029ED1V01Y202007MEC028
  • Arya, D, et al., 2021. Deep learning-based road damage detection and classification for multiple countries. Automation in Construction, 132, 1–18. doi:10.1016/j.autcon.2021.103935.
  • Bhagat PK, Choudhary P, Singh KM (2019) Chapter 13 – A comparative study for brain tumor detection in MRI images using texture features. In: N. Dey, J. Chaki, and R. Kumar, eds. Sensors for health monitoring (Vol. 5). Massachusetts, United States: Academic Press, 259–287. doi:10.1016/B978-0-12-819361-7.00013-0
  • Breiman, L, et al., 1984. Classifcation and regression trees. Montery, Calif, USA: Wadsworth and Brooks.
  • Bui, DT, et al., 2020. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Science of The Total Environment, 701, 1–12. doi:10.1016/j.scitotenv.2019.134413
  • Calin, O, 2020. Deep learning architectures – A mathematical approach springer series in the data sciences. New York, Switzerland: Springer Nature. doi:10.1007/978-3-030-36721-3
  • Canestrari, F, and Ingrassia, LP, 2020. A review of top-down cracking in asphalt pavements: causes, models, experimental tools and future challenges. Journal of Traffic and Transportation Engineering (English Edition), 7, 541–572. doi:10.1016/j.jtte.2020.08.002.
  • Chen, Q, et al., 2021. Pavement crack detection using hessian structure propagation. Advanced Engineering Informatics, 49, 1–14. doi:10.1016/j.aei.2021.101303.
  • Chollet, F, 2015. Deep Learning with Python Manning Publications, ISBN: 9781617294433.
  • Chouchane, A, Belahcene, M, and Bourennane, S, 2015. 3D and 2D face recognition using integral projection curves based depth and intensity images. International Journal of Intelligent Systems Technologies and Applications, 14, 50–69. doi:10.1504/IJISTA.2015.072219.
  • Cubero-Fernandez, A, et al., 2017. Efficient pavement crack detection and classification. EURASIP Journal on Image and Video Processing, 2017, 1–11. doi:10.1186/s13640-017-0187-0.
  • Cui, P, et al., 2018. Residual fatigue properties of asphalt pavement after long-term field service. Materials, 11, 1–13.
  • Davies, ER, and Turk, MA, 2022. Advanced methods and deep learning in computer vision. Massachusetts, United States: Academic Press, Elsevier.
  • Du, Z, et al., 2021. Application of image technology on pavement distress detection: A review. Measurement, 184, 1–20. doi:https://doi.org/10.1016/j.measurement.2021.109900.
  • Fawcett, T, 2006. An introduction to ROC analysis pattern. Recognition Letters, 27, 861–874. doi:https://doi.org/10.1016/j.patrec.2005.10.010.
  • Freeman, WT, and Adelson, EH, 1991. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 891–906. doi:10.1109/34.93808.
  • García-Mateos, G, Ruiz, A, and Lopez-de-Teruel, PE, 2002. Face detection using integral projection models. In: T. Caelli, A. Amin, R.P.W. Duin, D. de Ridder and M. Kamel, eds. Structural, syntactic, and statistical pattern recognition. Berlin Heidelberg: Springer, 644–653.
  • Gavilán, M, et al., 2011. Adaptive road crack detection system by pavement classification. Sensors, 11, 9628–9657.
  • Géron, A, 2019. Hands-on machine learning with scikit-learn and TensorFlow: concepts, tools, and techniques to build intelligent systems O'Reilly. California, United States: Media.
  • Geurts, P, Ernst, D, and Wehenkel, L, 2006. Machine Learning, 63, 3–42. doi:10.1007/s10994-006-6226-1.
  • Goodfellow, I, Bengio, Y, and Courville, A, 2016. Deep learning (adaptive computation and machine learning series). Massachusetts, United States: The MIT Press. ISBN-100262035618.
  • Hakim, WL, et al., 2022. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in icheon, South Korea. Journal of Environmental Management, 305, 1–14. doi:https://doi.org/10.1016/j.jenvman.2021.114367.
  • Haralick, RM, 1979. Statistical and structural approaches to texture. Proceedings of the IEEE, 67, 786–804. doi:10.1109/PROC.1979.11328.
  • Heaton, J, 2015. Artificial intelligence for humans, volume 3 deep learning and neural networks. California, US: Heaton Research, Inc.
  • Herman, J, and Usher, W, 2017. SALib: An open-source python library for sensitivity analysis. The Journal of Open Source Software, 2, 1–21. doi:10.21105/joss.00097.
  • Hernandez-Matamoros, A, et al., 2016. Facial expression recognition with automatic segmentation of face regions using a fuzzy based classification approach. Knowledge-Based Systems, 110, 1–14. doi:10.1016/j.knosys.2016.07.011.
  • Hoang, N-D, 2019. Automatic detection of asphalt pavement raveling using image texture based feature extraction and stochastic gradient descent logistic regression. Automation in Construction, 105, 1–12. doi:10.1016/j.autcon.2019.102843.
  • Hoang, N-D, et al., 2022. A novel approach for detection of pavement crack and sealed crack using image processing and salp swarm algorithm optimized machine learning. Advances in Civil Engineering, 2022, 1–21. doi:10.1155/2022/9193511.
  • Hoang, N-D, and Bui, DT, 2018. Predicting earthquake-induced soil liquefaction based on a hybridization of kernel fisher discriminant analysis and a least squares support vector machine: a multi-dataset study. Bulletin of Engineering Geology and the Environment, 77, 191–204. doi:10.1007/s10064-016-0924-0.
  • Hoang, N-D, Huynh, T-C, and Tran, V-D, 2021. Computer vision-based patched and unpatched pothole classification using machine learning approach optimized by forensic-based investigation metaheuristic. Complexity, 2021, 1–17. doi:10.1155/2021/3511375.
  • Hoang, N-D, and Nguyen, Q-L, 2018. Automatic recognition of asphalt pavement cracks based on image processing and machine learning approaches: A comparative study on classifier performance. Mathematical Problems in Engineering, 2018, 1–16. doi:10.1155/2018/6290498.
  • Hoang, N-D, Nguyen, Q-L, and Bui, DT, 2018a. Image processing-based classification of asphalt pavement cracks using support vector machine optimized by artificial Bee colony. Journal of Computing in Civil Engineering, 32, 04018037. doi:10.1061/(ASCE)CP.1943-5487.0000781.
  • Hoang, N-D, Nguyen, Q-L, and Tran, V-D, 2018b. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Automation in Construction, 94, 203–213. doi:10.1016/j.autcon.2018.07.008.
  • Hollander, M, and Wolfe, DA, 1999. Nonparametric statistical methods. Hoboken, NJ: John Wiley & Sons.
  • Huang, X, Wang, SJ, and Zhao, G, 2015. Facial micro-expression recognition using spatiotemporal local binary pattern with integral projection. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), 1–9. doi:10.1109/ICCVW.2015.10
  • Huyan, J, et al., 2020. CrackU-net: A novel deep convolutional neural network for pixelwise pavement crack detection. Structural Control and Health Monitoring, n/a, 1–19. doi:10.1002/stc.2551.
  • Kheradmandi, N, and Mehranfar, V, 2022. A critical review and comparative study on image segmentation-based techniques for pavement crack detection. Construction and Building Materials, 321, 1–26. doi:https://doi.org/10.1016/j.conbuildmat.2021.126162.
  • Khumsap, P, et al., 2018. Novel feature extractions for reflection, alligator cracks and potholes road surface classification. In: 2018 22nd International Computer Science and Engineering Conference (ICSEC), 1–4. doi:10.1109/ICSEC.2018.8712645
  • Kim, P, 2017. Matlab deep learning with machine learning. Neural Networks and Artificial Intelligence Apress, ISBN 1484228448.
  • Kim, B, and Cho, S, 2019. Image-based concrete crack assessment using mask and region-based convolutional neural network. Structural Control and Health Monitoring, 26, 1–15. doi:https://doi.org/10.1002/stc.2381.
  • Kingma DP, Ba J (2015) Adam: A Method for Stochastic Optimization arXiv:14126980 [csLG], 1–15. doi:10.48550/arXiv.1412.6980
  • Kononenko I. (1994) Estimating attributes: analysis and extensions of RELIEF. In: F. Bergadano and L. Raedt, eds. Machine learning: ECML-94. Berlin, Heidelberg: Springer, 171–182.
  • Kuncheva, LI, 2014. Combining pattern classifiers: methods and algorithms. Printed in the United States of America: John Wiley & Sons, Inc.
  • LeCun, Y, and Bengio, Y, 1998. Convolutional networks for images, speech, and time series. In: M. A. Arbib, ed. The handbook of brain theory and neural network. Cambridge, MA, USA: MIT Press, 255–258.
  • LeCun, Y, Bengio, Y, and Hinton, G, 2015. Nature, 521, 436–444. doi:10.1038/nature14539.
  • Li, Y, 1999. Asphalt Pavement Fatigue Cracking Modeling LSU Historical Dissertations and Theses 6999 https://digitalcommonslsuedu/gradschool_disstheses/6999.
  • Li, B, et al., 2020. Automatic classification of pavement crack using deep convolutional neural network. International Journal of Pavement Engineering, 1–7. doi:10.1080/10298436.2018.1485917.
  • Li, S, Cao, Y, and Cai, H, 2017. Automatic pavement-crack detection and segmentation based on steerable matched filtering and an active contour model. Journal of Computing in Civil Engineering, 31, 1–9. doi:10.1061/(ASCE)CP.1943-5487.0000695.
  • Liang, J, Gu, X, and Chen, Y, 2020. Fast and robust pavement crack distress segmentation utilizing steerable filtering and local order energy. Construction and Building Materials, 262, 1–13. doi:10.1016/j.conbuildmat.2020.120084.
  • Liu, F, Liu, J, and Wang, L, 2022. Asphalt pavement crack detection based on convolutional neural network and infrared thermography. IEEE Transactions on Intelligent Transportation Systems, 23, 1–11. doi:10.1109/TITS.2022.3142393.
  • Liu, Y, and Yeoh, JKW, 2021. Robust pixel-wise concrete crack segmentation and properties retrieval using image patches. Automation in Construction, 123, 1–17. doi:10.1016/j.autcon.2020.103535.
  • López, V, et al., 2013. An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Information Sciences, 250, 113–141. doi:10.1016/j.ins.2013.07.007.
  • Mathavan S, Rahman M, Kamal K (2015) Use of a self-organizing Map for crack detection in highly textured pavement images Journal of Infrastructure Systems 21, 1–11. doi:10.1061/(ASCE)IS.1943-555X.0000237
  • MathWorks, 2019. Deep Learning Toolbox The MathWorks, Inc, https://wwwmathworkscom/help/deeplearning/index (Last Access Date: 07/11/2019).
  • McRae, GJ, Tilden, JW, and Seinfeld, JH, 1982. Global sensitivity analysis—a computational implementation of the Fourier amplitude sensitivity test (FAST). Computers & Chemical Engineering, 6, 15–25. doi:10.1016/0098-1354(82)80003-3.
  • Miller, JS, and Bellinger, WY, 2003. Distress identification manual for the long-term pavement performance program (4th revised ed.). McLean, VA: Federal Highway Administration.
  • Mokhtari, S, Wu, L, and Yun, H-B, 2016. Comparison of supervised classification techniques for vision-based pavement crack detection. Transportation Research Record: Journal of the Transportation Research Board, 2595, 119–127. doi:10.3141/2595-13.
  • Oliveira, H, and Correia, PL, 2013. Automatic road crack detection and characterization. IEEE Transactions on Intelligent Transportation Systems, 14, 155–168. doi:10.1109/TITS.2012.2208630.
  • Oliveira, H, and Correia, PL, 2009, Aug 24-28. Automatic road crack segmentation using entropy and image dynamic thresholding. In: 2009 17th European signal processing conference, 622–626. Glasgow, Scotland: The Institute of Electrical and Electronics Engineers (IEEE).
  • Ouma YO, Hahn M (2016) Wavelet-morphology based detection of incipient linear cracks in asphalt pavements from RGB camera imagery and classification using circular radon transform Advanced Engineering Informatics 30, 481–499. doi:10.1016/j.aei.2016.06.003
  • Ozer, H, et al., 2018. Prediction of pavement fatigue cracking at an accelerated testing section using asphalt mixture performance tests. International Journal of Pavement Engineering, 19, 264–278. doi:10.1080/10298436.2017.1347435.
  • Paul, A, et al., 2019. Property prediction of organic donor molecules for photovoltaic applications using extremely randomized trees. Molecular Informatics, 38, 1–12. doi:10.1002/minf.201900038.
  • PavementInteractive, 2022. Fatigue Cracking Pavement Interactive, https://pavementinteractiveorg/reference-desk/pavement-management/pavement-distresses/fatigue-cracking/ (Last Access Date 03/30/2022).
  • Pedregosa, F, et al., 2011. Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
  • Perona, P, 1995. Deformable kernels for early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 488–499. doi:10.1109/34.391394.
  • Pham, BT, et al., 2017. Landslide susceptibility assesssment in the uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve Bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 128, 255–273. doi:10.1007/s00704-015-1702-9.
  • Pianosi, F, Sarrazin, F, and Wagener, T, 2015. A matlab toolbox for global sensitivity analysis. Environmental Modelling & Software, 70, 80–85. doi:10.1016/j.envsoft.2015.04.009.
  • Powers, DMW, 2015. What the F-measure doesn't measure. arXiv:150306410 [csIR].
  • Putzu L, Di Ruberto C. 2017. Rotation invariant Co-occurrence matrix features. In Sebastiano Battiato, Giovanni Gallo, Raimondo Schettini, & Filippo Stanco (Eds.), Image analysis and processing – ICIAP 2017 (pp. 391–401). Cham: Springer International Publishing.
  • Ranjbar, S, Nejad, FM, and Zakeri, H, 2022. An image-based system for asphalt pavement bleeding inspection. International Journal of Pavement Engineering, 23, 1–17. doi:10.1080/10298436.2021.1932881.
  • Robnik-Šikonja, M, and Kononenko, I, 2003. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 53, 23–69. doi:10.1023/A:1025667309714.
  • Saar, T, 2010. Automatic asphalt pavement crack detection and classification using neural networks. In: 2010 12th Biennial Baltic Electronics Conference, 345–348. Tallinn, Estonia: The Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/BEC.2010.5630750.
  • Saeed, U, et al., 2021. Fault diagnosis based on extremely randomized trees in wireless sensor networks. Reliability Engineering & System Safety, 205, 1–11. doi:10.1016/j.ress.2020.107284.
  • Sagi O, Rokach L (2018) Ensemble learning: A survey WIRES Data Mining and Knowledge Discovery 8:e1249 doi:10.1002/widm.1249
  • Salman, M, et al., 2013. Pavement crack detection using the gabor filter. In 16th international IEEE conference on intelligent transportation systems (ITSC 2013), 2039–2044. The Hague, Netherlands: The Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ITSC.2013.6728529.
  • Saltelli, A, Tarantola, S, and Chan, KPS, 1999. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41, 39–56. doi:10.1080/00401706.1999.10485594.
  • Skansi, S, 2018. Introduction to deep learning – from logical calculus to artificial intelligence. Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-319-73004-2
  • Sonka, M, Hlavac, V, and Boyle, R, 2013. Image processing, analysis, and machine vision. Printed in the United States of America: Cengage Learning. ISBN-10:1-133-59360-7.
  • Sugomori, Y et al., 2017. Deep learning – practical neural networks with java. United Kingdom: Packt Publishing Limited.
  • Theodoridis, S, and Koutroumbas, K, 2009. Pattern recognition. Printed in the United States of America: Academic Press. ISBN 978-1-59749-272-0.
  • Tran, TS, et al., 2022. A two-step sequential automated crack detection and severity classification process for asphalt pavements. International Journal of Pavement Engineering, 23, 1–15. doi:10.1080/10298436.2020.1836561.
  • Urbanowicz, RJ, et al., 2018. Relief-based feature selection: introduction and review. Journal of Biomedical Informatics, 85, 189–203. doi:10.1016/j.jbi.2018.07.014.
  • van Erkel, AR, and Pattynama, PMT, 1998. Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology. European Journal of Radiology, 27, 88–94. doi:10.1016/S0720-048X(97)00157-5.
  • Van Le, H, et al., 2021. A new approach of deep neural computing for spatial prediction of wildfire danger at tropical climate areas. Ecological Informatics, 63, 1–13. doi:10.1016/j.ecoinf.2021.101300.
  • Walt, S, et al., 2014. scikit-image: image processing in python. PeerJ, 2, 1–18. doi:10.7717/peerj.453.
  • Zhang, L, et al., 2016. Road crack detection using deep convolutional neural network. In Proc. of the 2016 IEEE international conference on image processing (ICIP), 25-28 sept, 3708–3712. Phoenix, AZ, USA: The Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICIP.2016.7533052.
  • Zhang, D, et al., 2017. An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection. Image and Vision Computing, 57, 130–146. doi:10.1016/j.imavis.2016.11.018.
  • Zhang, Y, Ding, C, and Li, T, 2008. Gene selection algorithm by combining reliefF and mRMR. BMC Genomics, 9, 1–10. doi:10.1186/1471-2164-9-S2-S27.
  • Zhao, X, Xue, L, and Xu, F, 2021. Asphalt pavement paving segregation detection method using more efficiency and quality texture features extract algorithm. Construction and Building Materials, 277, 1–19. doi:10.1016/j.conbuildmat.2021.122302.
  • Zhu, Z, German, S, and Brilakis, I, 2011. Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation. Automation in Construction, 20, 874–883. doi:10.1016/j.autcon.2011.03.004.
  • Zubair, AR, and Alo, OA, 2020. Content-based image retrieval system using second-order statistics. International Journal of Computer Applications, 176, 12–20. doi:10.5120/ijca2020920475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.