227
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of anti-ageing performance of bitumen based on rheological and chemical characterisation

, , ORCID Icon, &
Article: 2213385 | Received 16 Nov 2022, Accepted 08 May 2023, Published online: 19 May 2023

References

  • Adwani, Dheeraj., et al., 2023. Interpreting the effectiveness of antioxidants to increase the resilience of asphalt binders: a global interlaboratory study. Construction and Building Materials, 366, 130231. doi:10.1016/j.conbuildmat.2022.130231.
  • Angelo, D.J., 2009. The relationship of the MSCR test to rutting. Road Materials and Pavement Design, 10, 61–80. doi:10.1080/14680629.2009.9690236.
  • Brown, J.K., and Ladner, W.R., 1960. A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy II – a comparison with infrared measurement and the conversion to carbon structure. Fuel, 39, 87–96.
  • Chen, Z., et al., 2021. Long-term photo oxidation aging investigation of temperature-regulating bitumen based on thermochromic principle. Fuel, 286, 119403. doi:10.1016/j.fuel.2020.119403.
  • Cong, P., et al., 2014. Effects of carbon black on the anti aging, rheological and conductive properties of SBS/asphalt/carbon black composites. Construction and Building Materials, 52, 306–313. doi:10.1016/j.conbuildmat.2013.11.061.
  • Dhia, T.B., et al., 2021. Anti-aging additives: proposed evaluation process based on literature review. Road Materials and Pavement Design, 22 (2), S134–S153.
  • Fernandez-Gomez, W.D., et al., 2013. A review of asphalt and asphalt mixture aging. Ingeniería e Investigación, 33 (1), 5–12. doi:10.15446/ing.investig.v33n1.37659.
  • Gao, Y.M., et al., 2021. Influence of anti-ageing compounds on rheological properties of bitumen. Journal of Cleaner Production, 318, 128559. doi:10.1016/j.jclepro.2021.128559.
  • Guo, M., et al., 2021a. Average molecular structure models of unaged asphalt binder fractions. Materials and Structures, 54 (4), Article 173.
  • Guo, M., et al., 2021b. Characterisation of rejuvenation of various modified asphalt binders based on simplified chromatographic techniques. International Journal of Pavement Engineering, 2, 1–11. doi:10.1080/10298436.2019.1575379.
  • Guo, M., et al., 2021c. Evaluation of asphalt binder anti-aging performance based on rheological and chemical properties. Proceedings of the 5th international symposium on frontiers of road and airport engineering, Delft, Netherlands.
  • Guo, M., et al., 2021d. Rheological characterization of reversibility between aging and rejuvenation of common modified asphalt binders. Construction and Building Materials, 301 (6), 124077. doi:10.1016/j.conbuildmat.2021.124077.
  • Guo, M., et al., 2022. Review of aging and antiaging of asphalt and asphalt mixtures. China Journal of Highway and Transport, 35 (4), 41–59.
  • Han, S., et al., 2019. Changes in rheological properties during asphalt aging. Petroleum Science and Technology, 37 (13), 1539–1547. doi:10.1080/10916466.2019.1587454.
  • Hasan, M.U., et al., 1983. Structural characterization of Saudi Arabian heavy crude oil by N.M.R. spectroscopy, Fuel, 62 (5), 518–523.
  • Hofko, B., et al., 2018. FTIR spectral analysis of bituminous binders: reproducibility and impact of ageing temperature. Materials and Structures, 51, 45. doi:10.1617/s11527-018-1170-7.
  • Hou, X., et al., 2018. Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement, 121, 304–316. doi:10.1016/j.measurement.2018.03.001.
  • Jia, H.S., et al., 2007. The combination effect of hindered amine light stabilizers with UV absorbers on the radiation resistance of polypropylene. Radiation Physics and Chemistry, 76 (7), 1179–1188. doi:10.1016/j.radphyschem.2006.12.008.
  • Khawla, A.A., et al., 1996. Preparation and evaluation of sustained release AZT-loaded microspheres: optimization of the release characteristics using response surface methodology. Journal of Pharmaceutical Sciences, 85 (2), 144–149. doi:10.1021/js950353+.
  • Khodaii, I. A., and Mehrara, A., 2009. Evaluation of permanent deformation of unmodified and SBS modified asphalt mixtures using dynamic creep test. Construction and Building Materials, 23 (7), 2586–2592. doi:10.1016/j.conbuildmat.2009.02.015.
  • Kumar, S.A., and Veeraragavan, A., 2011. Dynamic mechanical characterization of asphalt concrete mixes with modified asphalt binders. Materials Science and Engineering: A, 528 (21), 6445–6454. doi:10.1016/j.msea.2011.05.008.
  • Li, Y.Y., et al., 2018. Investigation of sodium stearate organically modified LDHs effect on the anti aging properties of asphalt binder. Construction and Building Materials, 172, 509–518. doi:10.1016/j.conbuildmat.2018.03.181.
  • Liu, G., et al., 2018. Effects of aging on rheological properties of asphalt materials and asphalt-filler interaction ability. Construction and Building Materials, 168, 501–511. doi:10.1016/j.conbuildmat.2018.02.171.
  • Liu, L., et al., 2020. Effect of ultraviolet absorber (UV-531) on the properties of SBS-modified asphalt with different block ratios. Construction and Building Materials, 234, 117388. doi:10.1016/j.conbuildmat.2019.117388.
  • Liu, Jun., et al., 2021. Evaluation of cracking susceptibility of Alaskan polymer modified asphalt binders using chemical and rheological indices. Construction and Building Materials, 271, 121897. doi:10.1016/j.conbuildmat.2020.121897.
  • Lu, X.H., et al., 2017. Structural and chemical analysis of bitumen using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Fuel, 199, 206–218. doi:10.1016/j.fuel.2017.02.090.
  • Lyu, W.J., et al., 2019. Average molecule construction of petroleum fractions based on 1H-NMR. AIChE Journal, 65 (1), 270–280. doi:10.1002/aic.16390.
  • Mohamed, A.A., et al., 2009. Rheological properties of crumb rubber modified bitumen containing antioxidant. The Arabian Journal for Science and Engineering, 34 (1B), 3–12.
  • Ruan, Y., et al., 2003. Oxidation and viscosity hardening of polymer-modified asphalts. Energy & Fuels, 17 (4), 991–998. doi:10.1021/ef020221l.
  • Sun, X.L., et al., 2021. Evaluation and characterization on the segregation and dispersion of anti-UV aging modifying agent in asphalt binder. Construction and Building Materials, 289 (268), 123204. doi:10.1016/j.conbuildmat.2021.123204.
  • Tan, Y.Q., et al., 2008. Ultraviolet aging mechanism of asphalt binder. China Journal of Highway and Transport, 01, 19–24.
  • Virginie, M., et al., 2008. Ageing by UV radiation of an elastomer modified bitumen. Fuel, 87, 2408–2419. doi:10.1016/j.fuel.2008.02.008.
  • Williams, R.C., and McCready, N.S., 2008. The utilization of agriculturally derived lignin as an antioxidant in asphalt binder. Ames, IA: Iowa State University.
  • Xing, C., et al., 2020. Analysis of base bitumen chemical composition and aging behaviors via atomic force microscopy-based infrared spectroscopy. Fuel, 264, 116845. doi:10.1016/j.fuel.2019.116845.
  • Xu, G.J., et al., 2017a. Rheological properties and anti-aging performance of asphalt binder modified with wood lignin. Construction and Building Materials, 151, 801–808. doi:10.1016/j.conbuildmat.2017.06.151.
  • Xu, S., et al., 2017b. Laboratory evaluation of rejuvenation effect of reactive rejuvenator on aged SBS modified bitumen. Materials and Structures, 50 (6), 233. doi:10.1617/s11527-017-1106-7.
  • Xu, M., et al., 2019. Improved chemical system for molecular simulations of asphalt. Energy & Fuels, 33 (4), 3187–3198. doi:10.1021/acs.energyfuels.9b00489.
  • Yang, J., et al., 2010. Preparation and characterization of polystyrene (PS)/layered double hydroxides (LDHs) composite by a heterocoagulation method. Colloid and Polymer Science, 288 (7), 761–767. doi:10.1007/s00396-010-2204-z.
  • Zeng, W.S., et al., 2018. Research on Ultra Violet (UV) aging depth of asphalts. Construction and Building Materials, 160, 620–627. doi:10.1016/j.conbuildmat.2017.11.047.
  • Zhang, L., et al., 2014. Molecular weight and aggregation of heavy petroleum fractions measured by vapor pressure osmometry and a hindered stepwise aggregation model. Energy & Fuels, 28 (10), 6179–6187. doi:10.1021/ef500749d.
  • Zhang, H.Y., et al., 2019. Effect of long-term laboratory aging on rheological properties and cracking resistance of polymer-modified asphalt binders at intermediate and low temperature range. Construction and Building Materials, 226, 767–777. doi:10.1016/j.conbuildmat.2019.07.206.
  • Zhang, S., et al., 2021. Investigation of anti-aging mechanism of multi-dimensional nanomaterials modified asphalt by FTIR, NMR and GPC. Construction and Building Materials, 305: 124809. doi:10.1016/j.conbuildmat.2021.124809.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.