138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on the effect of different environmental factors on the aging gradient of asphalt binder based on field aging test

, , , &
Article: 2245950 | Received 22 May 2023, Accepted 03 Aug 2023, Published online: 15 Aug 2023

References

  • Ahmad, A. Q., et al., 2020. Finite element cohesive fracture modeling of asphalt mixture based on the semi-circular bending (SCB) test and self-affine fractal cracks at low temperatures. Cold Regions Science and Technology, 169, 102916. doi:10.1016/j.coldregions.2019.102916.
  • Anderson, R., et al., 2011. Evaluation of the relationship between asphalt binder properties and non-load related cracking. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 80.
  • Chen, Z. H., et al., 2020. Investigation of ultraviolet radiation aging gradient in asphalt binder. Construction and Building Materials, 246, 118501. doi:10.1016/j.conbuildmat.2020.118501.
  • Elich, J., and Hamerlinck, A.F, 1990. Thermal-radiation properties of galvanized steel and its importance in enclosure fire scenarios. Fire Safety Journal, 16 (6), 469–482. doi:10.1016/0379-7112(90)90023-8.
  • Fernandez-Gomez, W.D., et al., 2013. A review of asphalt and asphalt mixture aging. Ingenieria E Investigacion, 33 (1), 5–12. doi:10.15446/ing.investig.v33n1.37659.
  • Ge, D., et al., 2019. Correlation of DSR results and FTIR’s carbonyl and sulfoxide indexes: effect of aging temperature on asphalt rheology. Journal of Materials in Civil Engineering, 31 (7), 04019115. doi:10.1061/(ASCE)MT.1943-5533.0002781.
  • Guo, M., et al., 2021a. Average molecular structure models of unaged asphalt binder fractions. Materials and Structures, 54 (4). doi:10.1617/s11527-021-01754-2, Article 173.
  • Guo, M., et al., 2021b. Rheological characterization of reversibility between aging and rejuvenation of common modified asphalt binders. Construction and Building Materials, 301 (6), 124077. doi:10.1016/j.conbuildmat.2021.124077.
  • Guo, M., et al., 2022a. Characterisation of rejuvenation of various modified asphalt binders based on simplified chromatographic techniques. International Journal of Pavement Engineering, 2, 1–11. doi:10.1080/10298436.2021.1943743.
  • Guo, M., et al., 2022b. Review of aging and anti-aging of asphalt and asphalt mixtures. China Journal of Highway and Transport, 35 (4), 41–59. https://kns.cnki.net/kcms/detail/61.1313.U.20210628.1700.010.html.
  • Guo, M., et al., 2023a. Evaluation on feasibility of carbon black and hindered amine light stabilizer as UV-resistant additives of asphalt binder. Journal of Testing and Evaluation, 2023, Accept.
  • Guo, M., et al., 2023b. Reversibility of macro performance of virgin asphalt binder at various aging regeneration stages based on rheology. Journal of Materials in Civil Engineering, 2023. doi:10.1061/JMCEE7/MTENG-16061.
  • He, X., et al., 2018. Accelerated aging of asphalt by UV photo-oxidation considering moisture and condensation effects. Journal of Materials in Civil Engineering, 30 (1). doi:10.1061/%28ASCE%29MT.1943-5533.0002120.
  • Hofko, B., et al., 2018. FTIR spectral analysis of bituminous binders: reproducibility and impact of ageing temperature. Materials and Structures, 51 (2). doi:10.1617/s11527-018-1170-7.
  • Hu, J.X., et al., 2018. The effect of ultraviolet radiation on bitumen aging depth. Materials, 11 (5), 747. doi:10.3390/ma11050747.
  • Hu, Z.H., et al., 2020. Thermal-oxidative aging mechanism of asphalt binder based on isothermal thermal analysis at the SARA level. Construction and Building Materials, 255 (3), 119349. doi:10.1016/j.conbuildmat.2020.11934955.
  • Hugener, M., et al., 2022. Recommendation of RILEM TC 264 RAP on the evaluation of asphalt recycling agents for hot mix asphalt. Materials and Structures, 55, 31. doi:10.1617/s11527-021-01837-0.
  • Hung, A.M., et al., 2019. Evolution of morphological and nanomechanical properties of bitumen thin films as a result of compositional changes due to ultraviolet radiation. ACS Sustainable Chemistry & Engineering, 7 (21), 18005–18014. doi:10.1021/acssuschemeng.9b04846.
  • Kang, A., et al., 2012. Aging of TOR asphalt rubber in combination of environmental factors. Journal of Nanjing University of Science and Technology, 36 (4), 724–728.
  • Li, X., et al., 2006. Evaluation of field aging effects on asphalt binder properties. Road Materials and Pavement Design, 7, 57–73. doi:10.1080/14680629.2006.9690058.
  • Li, Y.Y., et al., 2021. Gradient aging behaviors of asphalt aged by ultraviolet lights with various intensities. Construction and Building Materials, 295, 123618. doi:10.1016/j.conbuildmat.2021.123618.
  • Liang, M.C., et al., 2023. Effect of ozone aging on the rheological and chemical properties of crumb rubber-modified bitumen. Road Materials and Pavement Design. doi:10.1080/14680629.2023.2219327.
  • Liu, F, 2021. Linking chemical to rheological properties of asphalt binder with oxidative aging effect. Road Materials and Pavement Design, 22 (9), 2014–2028. doi:10.1080/14680629.2020.1740770.
  • Marsac, P., et al., 2014. Potential and limits of ftir methods for reclaimed asphalt characterisation. Materials and Structures, 47 (8), 1273–1286. doi:10.1617/s11527-014-0248-0.
  • Mirwald, J., et al., 2020. Investigating bitumen long-term-ageing in the laboratory by spectroscopic analysis of the sara fractions. Construction and Building Materials, 258, 119577. doi:10.1016/j.conbuildmat.2020.119577.
  • Moon, K. H., et al., 2016. Low-temperature performance of recycled asphalt mixtures under static and oscillatory loading. Road Materials and Pavement Design, 18 (2), 297–314. doi:10.1080/14680629.2016.1213500.
  • Mouillet, V., et al., 2014. Evolution of bituminous mix behavior submitted to UV rays in laboratory compared to field exposure. Materials and Structures, 47 (8), 1287–1299. doi:10.1617/s11527-014-0258-y.
  • Naskar, M., et al., 2013. Effect of ageing on different modified bituminous binders: comparison between RTFOT and radiation ageing. Materials and Structures, 46 (7), 1227–1241. doi:10.1617/s11527-012-9966-3.
  • Ogbo, C., et al., 2019. Mixture-based rheological evaluation tool for cracking in asphalt pavements. Road Materials and Pavement Design, 20 (sup1), S299–S314. doi:10.1080/14680629.2019.1592010.
  • Qi, Y.T., and Wang, F.X, 2003. Study and evaluation of aging performance of petroleum asphalts and their constituents during oxygen absorption. I. Oxygen absorption behaviors and kinetics. Petroleum Science and Technology, 21 (1-2), 283–299. doi:10.1081/LFT-120024384.
  • Rowe, G., et al., 2014. The influence of binder rheology on the cracking of asphalt mixes in airport and highway projects. Journal of Testing and Evaluation, 42, 20130245. doi:10.1520/JTE20130245.
  • Ruan, Y., et al., 2003. An investigation of asphalt durability: relationships between ductility and rheological properties for unmodified asphalts. Petroleum Science and Technology, 21 (1-2), 231–254. doi:10.1081/LFT-120016946.
  • Santos, A.L., et al., 2013. Wavelength dependence of biological damage induced by UV radiation on bacteria. Archives of Microbiology, 195 (1), 63–74. doi:10.1007/s00203-012-0847-5.
  • Sharma, B.K., et al., 2017. Modeling the performance properties of RAS and RAP blended asphalt mixes using chemical compositional information. In University, O.I.A.U. & Illinois, C.F.T. eds.
  • Song, S.L., et al., 2022. Effects of different natural factors on rheological properties of SBS modified asphalt. Materials, 15 (16), 5628. doi:10.3390/ma15165628.
  • Thomas, K.P, 2002. Impact of water during the laboratory aging of asphalt. Road Materials and Pavement Design, 3 (3), 299–315. doi:10.1080/14680629.2002.9689927.
  • Wang, P., et al., 2014. Evolution and locational variation of asphalt binder aging in long-life hot-mix asphalt pavements. Construction and Building Materials, 68, 172–182. doi:10.1016/j.conbuildmat.2014.05.091.
  • Wu, S.P., et al., 2010. Laboratory study on ultraviolet radiation aging of bitumen. Journal of Materials in Civil Engineering, 22 (8), 767–772. doi:10.1061/(ASCE)MT.1943-5533.0000010.
  • Yan, C., et al., 2019. Chemical and rheological evaluation of aging properties of high content sbs polymer modified asphalt. Fuel, 252, 417–426. doi:10.1016/j.fuel.2019.04.022.
  • Zeng, W., et al., 2018. Research on ultra violet (UV) aging depth of asphalts. Construction and Building Materials, 160, 620–627. doi:10.1016/j.conbuildmat.2017.11.047.
  • Zhang, Y.H., et al., 2020. Influence of different aging environments on rheological behavior and structural properties of rubber asphalt. Materials, 13 (15), 3376. doi:10.3390/ma13153376.
  • Zhang, S.H., et al., 2021. Low-temperature characteristics and microstructure of asphalt under complex aging conditions. Construction and Building Materials, 303, 124408. doi:10.1016/j.conbuildmat.2021.124408.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.